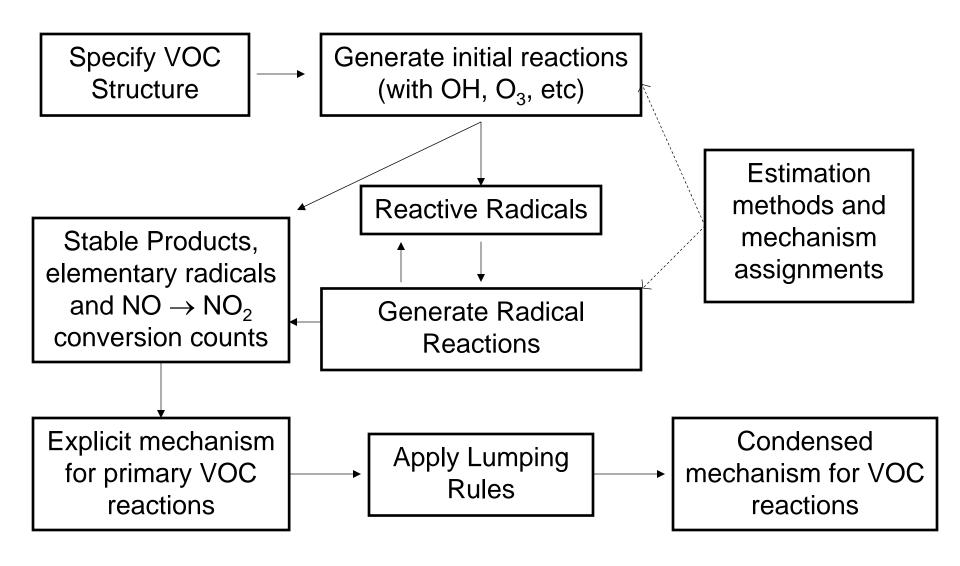
The SAPRC Chemical Mechanisms

William P. L. Carter CE-CERT, University of California, Riverside December 6, 2006


Outline

- Major components of the SAPRC mechanisms
- Mechanism generation system
- Status of SAPRC mechanism updates
 - Preliminary updated aromatics mechanism
 - Preliminary evaluation against chamber data
- Remaining mechanism update work and issues

Major Components of SAPRC Mechanisms

- Base Mechanism
 - Reactions of inorganics and common organic products
- Mechanisms for individual VOCs
 - Currently, mechanisms derived for over 550 types of VOCs
 - **Mechanism generation system** used to derive fully explicit mechanisms that are condensed using "lumping rules"
 - Simplified mechanisms used for compounds whose explicit mechanisms cannot be estimated (e.g. aromatics)
- Condensed mechanisms for airshed models
 - Mechanisms for limited number of "lumped model species" are derived from those of mixture of VOCs they represent
 - These depend on the composition of the mixture taken as representative of VOC emissions from all sources

Mechanism Generation System

Mechanism Generation System Capabilities

- Generates mechanisms for reactions of alkanes, alkenes, alkynes, aldehydes, ethers, esters, nitrates, acids and most of their oxidation products with OH, O₃, NO₃, O³P and photolysis
- Measured rate constants (or rate constant ratios) are used where available. Estimation methods are used otherwise.
- Estimation Methods
 - Structure-reactivity estimates for OH, O₃, and NO₃ reactions
 - Nitrate yields from RO₂+NO based on size of the RO₂ radical and limited data on effects of substituents
 - Alkoxy radical estimates based (primarily) on correlations between rate constants and heats of reaction.
 - Other estimates based on extrapolations from known reactions adjustments to fit chamber data

Limitations of Mechanism Generation System

- Only generates mechanisms for systems with NO_x. (Peroxy radicals reacted only with NO. Peroxy + peroxy reactions are not generated. RC(O)O₂. radicals are treated as products)
- Limitations in thermochemical group estimate data limits types of alkoxy radicals for which estimates can be made.
- Estimation methods are very uncertain for photolysis reactions.
- Unsaturated radicals might undergo a wide variety of reactions for which estimation methods are unknown or very uncertain. Thermochemical data insufficient to support estimation methods
- System does not take steric effects into account
- The system used for SAPRC-99 could not process compounds with more than one double bond or more than one ring. (This capability has since been added.)

Examples of Sizes of Generated Mechanisms

Compound	<u>Reactions</u>	Products
n-Butane	20	8
Butoxy ethanol	54	22
Propylene glycol methyl ether acetate	84	27
n-Dodecane	120	37
6-methyl tetradecane	521	167
2-methyl-2-octyl cyclohexane	1618	520
Toluene (preliminary new system)	172	22

Note: - This does not count the oxidation product reactions - Peroxy + peroxy reactions are not generated

Status of SAPRC Mechanisms

- The current version in use is SAPRC-99
 - Represents the state of the science as of 1999
 - Used to calculate the MIR reactivity scale used in some CARB regulations. (Scales updated in 2002 with some VOCs' mechanisms updated)
 - Many airshed models use "Fixed Parameter" SAPRC-99 with condensed model species based on the "base ROG" mixture used in the reactivity scale calculations
- Updated SAPRC mechanism still under development. Anticipated completion is March, 2007. Current status:
 - Rate constants in base mechanism updated
 - Preliminary new explicit aromatics mechanisms developed
 - Limited evaluation against chamber data

Major Objectives of SAPRC Mechanism Updates

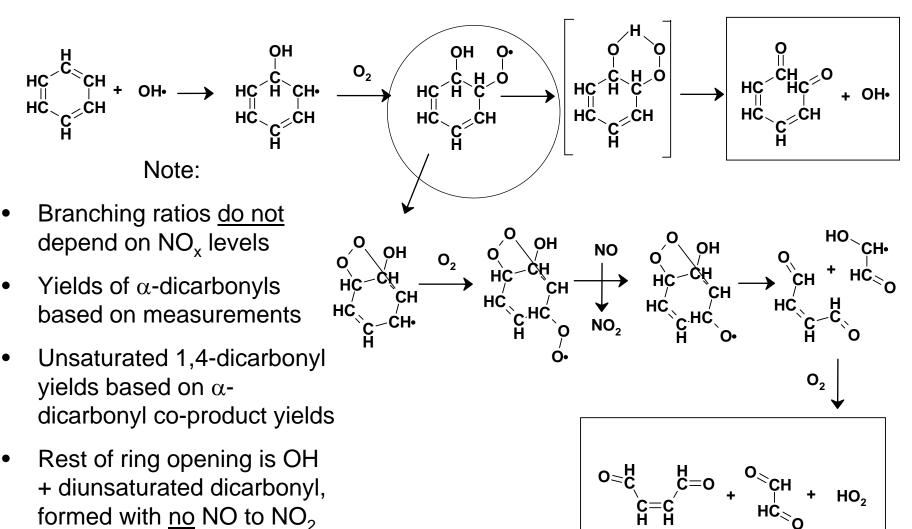
- Update rate constants and reactions to current state of science
- Add chlorine chemistry
- Improve mechanisms for aromatics
 - Address problems with mechanism simulating chamber data
 - Base mechanism on explicit chemistry, not parameterization
- Update and enhance mechanism generation system
 - Update estimation methods and assignments as needed
 - Enhance capabilities, e.g., to support generating explicit mechanisms for aromatics and chlorine atom reactions
- Improve capability to be adapted to secondary PM models
- Develop new condensed mechanisms from detailed version (including highly condensed version as an alternative to CB4)

Status of Mechanism Updates --Base Mechanism

 Updates to inorganic, CIO_x, and simple organic product mechanisms complete but not fully evaluated

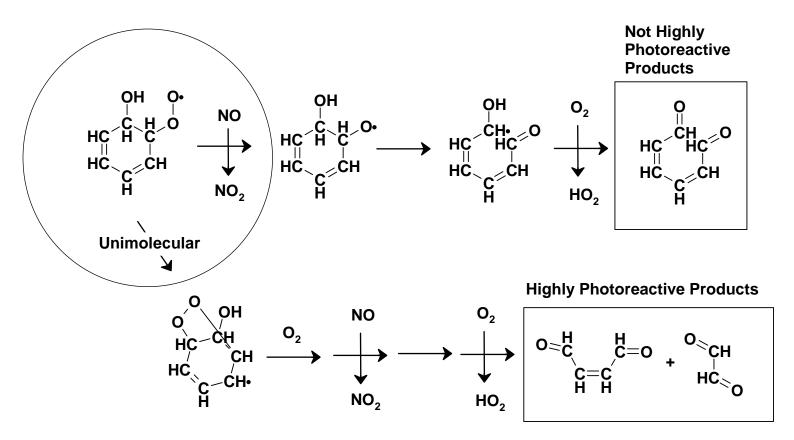
Potentially important rate constant changes	Change
Glyoxal + $hv \rightarrow$ Radicals	149% *
Lumped higher aldehyde + $h\nu \rightarrow$ Radicals (Solar light)	147% *
Generic peroxy + $HO_2 \rightarrow Generic hydroperoxides + O_2$	-48%
Methacrolein and lumped C_5 isoprene product photolysis	45% *
Methyl glyoxal photolysis	42% *
$OH + NO_2 + M \rightarrow HNO_3 + M$ (1 atm, 298K)	18%
$NO_2 + hv \rightarrow NO + O(^3P)$ (Solar light)	8% *

* Solar light


Status of Mechanism Updates --Mechanism Generation System

- Assigned VOC + OH, O_3 , NO₃, and O³P rate constants updated
- Capability to generate chlorine atom + VOC reactions added
 - Structure-reactivity methods to estimate rate constants
 - Mechanisms can be generated for saturated compounds, but alkene mechanism generation limited by lack of thermochemical group data for CI-containing radicals
- Capability to represent compounds and radicals with more than one ring and more than one double bond added
 - Necessary for generation of mechanisms for aromatics
- Methods developed to generate initial reactions of OH with alkylbenzenes and reactions of OH, O₃, and NO₃ with the unsaturated dicarbonyl ring opening products
 - No methods exist to estimate unsaturated dicarbonyl photolyses, which need to be specified manually

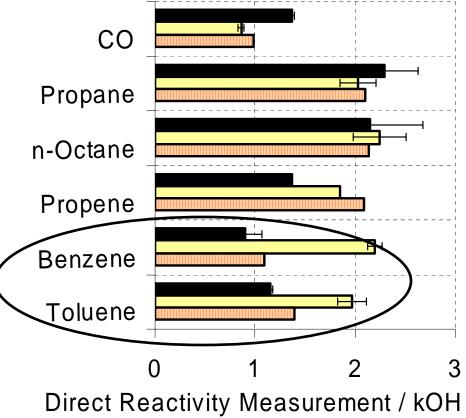
Status of Mechanism Updates --Aromatic Mechanisms


- SAPRC-99 uses parameterized species with adjusted yields and photolysis rates for uncharacterized ring opening products.
 - Adjusted to fit aromatic NO_x experiments.
 - Model gives poor fits to effects of adding CO to aromatic -NO_x experiments and to measurements of direct reactivity
- Aromatic mechanism update approach:
 - Derive explicit mechanisms for ring-opening reactions and reactions of unsaturated dicarbonyl ring-opening products, based on data in Calvert et al. review to extent possible.
 - Adjust uncertain photolysis mechanisms based on simulations of chamber data with furans and aromatics
 - Determine if explicit mechanisms can correctly predict reactivity differences among alkylbenzene isomers
 - Derive condensed mechanisms for airshed models based on explicit mechanisms so developed.

Ring Opening Mechanism Assumed

conversions

Alternative Ring Fragmentation Mechanism


This mechanism predicts that the yields of α -dicarbolyls and the highly photoreactive unsaturated dicarbonyl products will depend on NO_x levels. <u>This is not consistent with product</u> <u>yield or chamber data</u>.

Model Performance Simulating a Measurement of Direct Reactivity

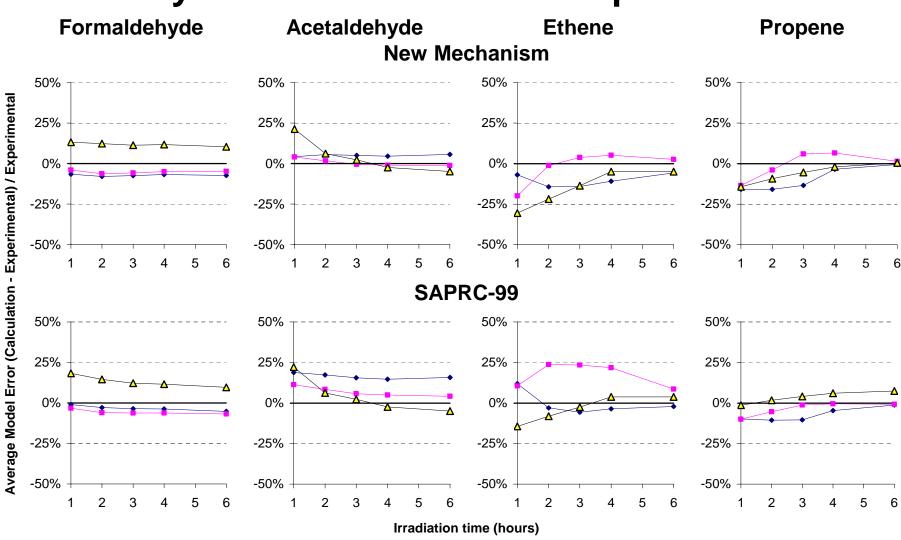
- Direct reactivity is the number of NO to NO₂ conversions caused by a VOC's reactions
- A HONO + VOC photolysis flow system gives a measurement sensitive to direct reactivity
- SAPRC-99 overpredicts direct reactivities of aromatics by up to a factor of 2
- New aromatics mechanism more consistent with direct reactivity data

Experimental SAPRC-99

New Mechanism

(Relative to Ethane = 2)

The SAPRC Chemical Mechanisms

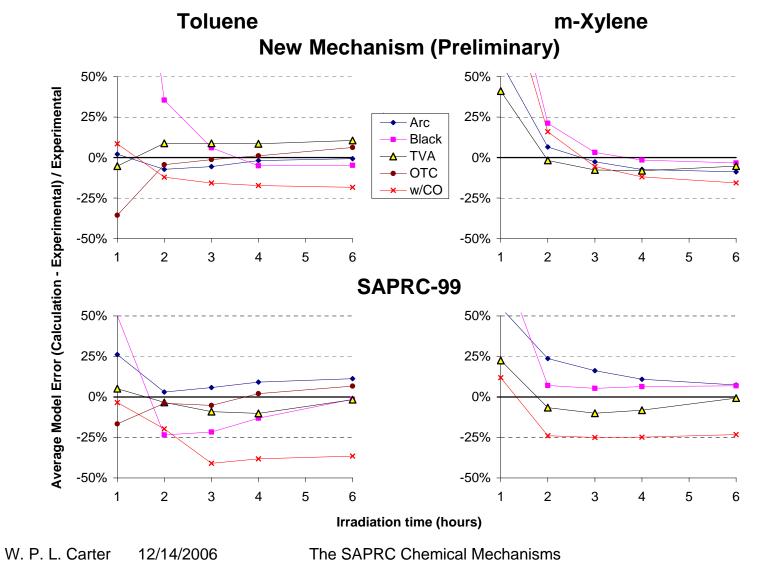

Reactions of Aromatic Products

- Parameterized mechanisms for phenols and cresols unchanged
- Each unsaturated dicarbonyl product formed from benzene, toluene, and xylene isomers is represented explicitly.
 - OH, O₃, and NO₃ reactions derived using the mechanism generation system
 - Unsaturated1,4-dicarbonyls assumed to photolyze rapidly, based on data in Calvert et. al. review. Preliminary version assumes that radical formation pathways dominate, based on simulations of toluene and m-xylene - NO_x experiments.
 - Dinusaturated 1,6-dicarbonyls are assumed <u>not</u> to photolyze rapidly to radicals, based on limited data given in Calvert et. al. review.
- Assumptions concerning photolysis of unsaturated dicarbonyls may be revised based on evaluations against chamber data

Status of Mechanism Updates --Preliminary Evaluation Using Chamber Data

Acetaldehyde, Formaldehyde	Similar model performance as SAPRC-99
Ethene	Somewhat less O ₃ than SAPRC-99
Propene, trans-2-Butene	Radical yields in O ₃ reactions now can be increased to be consistent with current evaluations
Toluene, m-Xylene	Must assume unsaturated dicarbonyl photolysis forms mainly radicals to fit O_3 formation rates. Different model performance than SAPRC-99
Benzene	O ₃ formation rates overpredicted
New Surrogate Experiments	Some differences from SAPRC-99 but similar overall quality of fits

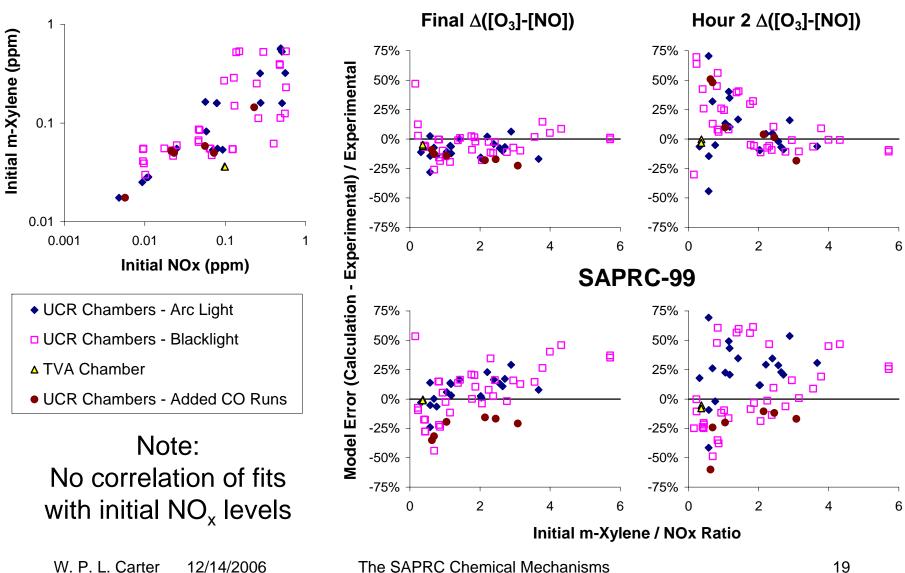
Model Performance Simulating Aldehyde and Alkene - NOx Experiments

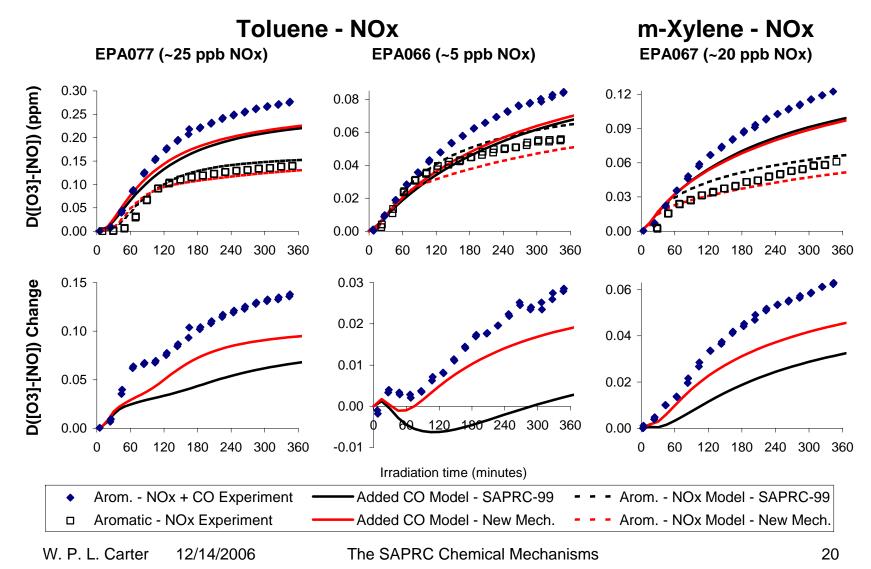


The SAPRC Chemical Mechanisms

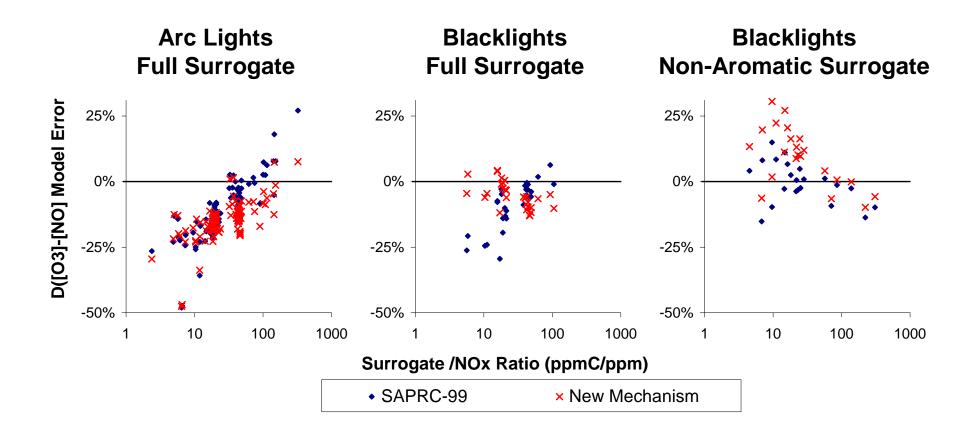
- Arc

----------Black


Model Performance in Simulating Toluene and m-Xylene - NOx Experiments


Matrix of m-Xylene - NO_x Experiments

New Mechanism



Model Performance in Simulating Effect of Adding CO to Aromatic - NOx Experiments

Model Performance Simulating UCR-EPA Chamber Surrogate - NOx Runs

Remaining Mechanism Update Work

Basic Chemistry Updates

- Complete evaluation, adjustments, and assessment of explicit aromatics mechanisms, using chamber data for benzene through trimethylbenzenes
- Re-assess parameterized mechanisms used for phenols and naphthalenes
- Re-assess O₃ and O³P + alkene mechanisms based on fits to chamber data for updated mechanism and current evaluations
- Incorporate new data of Atkinson et. al. on products formed in alkane photooxidations
- Review and update as needed estimation methods used in mechanism generation system
- Other updates?

Remaining Mechanism Update Work (cont'd)

Mechanism Adaptation

- Condense explicit aromatics mechanism to efficient size for airshed models and general aromatics representations
- Adaptations for PM modeling:
 - Add new model specie(s) to base mechanism to represent formation of condensable oxidation products.
 - Derive mechanism generation lumping rules for assignments to condensable products (use vapor pressure estimates?)
 - Consider new treatment of peroxy radical operators to permit separate representation of condensable hydroperoxides.
- Develop mechanism condensation approaches
 - Level 1: Minimum compromising of chemical accuracy
 - Level 2: Computational efficiency comparable to CB4/05

Remaining Mechanism Update Work (cont'd)

Mechanism Evaluation

- Evaluate mechanism against large body of chamber data
 - Experiments used in SAPRC-99 evaluation
 - New UCR EPA chamber experiments at lower NO_x levels
 - Incremental reactivity experiments in UCR chambers with a wide variety of compounds
 - TVA chamber experiments
 - Available UNC chamber experiments
 - Available Euphore experiments?
- Compare performance with SAPRC-99 and make corrections or adjustments where appropriate
- Evaluate condensed versions against detailed version and appropriate chamber data.

Remaining Issues

- New aromatics mechanism is not completely consistent with available laboratory and chamber data and theory
- Biases in model simulations of surrogate experiments still exist
- Uncertainties in alkene + O_3 and O^3P mechanisms
- Improved thermochemical database needed to extend estimation methods. (Quantum calculations may be useful.)
- Representation of oxidation products is highly approximate and not well evaluated against chamber data
- Approaches for representing SOA formation highly uncertain
- Need improved computer algorithms for efficient <u>and flexible</u> mechanism implementation.
- others?