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Important aspects of the current research on atmospheric aerosols have recently been
highlighted by Andreae and Crutzen (1997). The authors state that secondary organic
aerosols, formed by the oxidation of VOCs emitted from biogenic sources, probably account
for a significant fraction of the particulate matter in rural and remote continental air masses.
Monoterpenes (C10H16), which constitute one of the main fractions of the biogenic VOCs,
have since long been recognized as potential precursors of secondary organic aerosol in the
atmosphere  (Went, 1960). Aerosol yields from 5 - 100 % have been measured in laboratory
and environmental chamber studies, e.g. Hatakeyama et al. (1989); Hoffmann et al. (1997);
Kamens et al. (1999); Pandis et al. (1991); Schuetzle and Rasmussen (1978); Zhang et al.,
(1992), depending on the experimental conditions and on the species investigated. The present
study aims at providing more information on aerosol yields from terpene oxidation and on the
main chemical components in the particles.

Experimental
Studies of aerosol formation were carried out in a large outdoor smog chamber

(EUPHORE, Valencia, Spain) as well as in large Teflon bags and in a smaller (480 L)
chamber facility in Ispra, Italy. The study was mainly focussed on α-pinene, β-pinene and
limonene. The EUPHORE facility comprehends two hemispheric outdoor smog chambers,
each with a diameter of ~ 9 m and a volume of ~180 m3, both cooled at the floor. A detailed
description of the design and the analytical equipment of EUPHORE has been published by
Becker (1996).

The experiments included studies of ozonolysis reactions under dark conditions with
terpene concentrations in the range between 10 and 1000 ppbV in dry air, humidified air and
with or without addition of cyclohexane as a scavenger for OH radicals. Photo-oxidation of
terpenes was studied in EUPHORE by exposing mixtures of terpenes and NOx with initial
terpene concentrations of 100 ppbV and initial NOx-concentrations of 20 or 200 ppbV to
sunlight. The oxidation of terpenes in air, initiated by OH radicals, was also studied by
producing OH via the photolysis of methylnitrite in the chamber facility in Ispra.

The aerosol size distributions presented here were measured by a custom made
Vienna-type differential mobility analysis (DMA) system (Winkelmayr et al., 1991) coupled
to a condensation nuclei counter (TSI, model 3010). The system measured aerosol size
distributions in the range between 7 and 500 nm and was operated in dry-air conditions, thus
measuring the size of dry particles.

The hygroscopicity of aerosol particles was measured using a Tandem Differential
Mobility Analyser (TDMA) set-up where growth of particle diameter by uptake of water was
observed (Virkkula et al., 1999). Aerosol concentrations were corrected for wall-losses based
on the observed rate of decrease in particle number concentration at a late stage in the
experiments, when particle formation had ceased to take place.

Terpene concentrations were measured by gas chromatography with FID detection.
Carbonyl compounds were measured by sampling on DNPH-coated cartridges followed by
HPLC measurement of the hydrazones formed. Particles were collected on Teflon filters. The
smog-chamber aerosol extracts were analyzed either by GC-MS after derivatisation of
carboxylic acids by methylation or by a newly developed HPLC-MSn method, which has
proved efficient for polar terpene oxidation products (Glasius et al., 1999).

Aerosol yields
Aerosol mass concentrations were estimated by assuming a density of 1 g/cm3 for the
particles that were formed. Aerosol yields were found to increase with increasing aerosol
volume, as illustrated in Fig. 1 for the case of α-pinene. This observation is in qualitative



agreement with theoretical work on the partitioning of semi-volatile organic species between
the gas phase and a condensed organic matter phase (Odum et al., 1996; Pankow, 1994),

Fig. 1. Measured aerosol yields vs. measured aerosol concentrations compared to
curve obtained by applying a best fit of the unknown parameter in Equation I.

which indicates that the concentration dependence of the aerosol yield in a situation with
equilibrium partitioning between the gas and particle phase can be expressed by the equation

(I) Y= ΣYi=MΣ(αiKom,i)/(1+Kom,iM),
where Y is the total aerosol yield, Yi  is the aerosol yield of species i , M is the absorbing
organic aerosol mass concentration, αi is the total yield of species i. Kom,i  is the partitioning
coefficient for species i, which depends on its vapour pressure, its activity coefficient in the
condensed organic phase and on its molecular weight when the aerosol yield is expressed on a
weight-basis as it is in this work. Kom,i  (m

3/µg) is defined as ci aer/(M ci g), where ci aer and ci g
are the aerosol and gas phase concentrations (µg /m3) of species i. Kom,i also depends on the
temperature, but the relatively small temperature variations (around 293 K) within these
experiments had no evident influence on the aerosol yields.

By applying a best fit to the unknown  parameters in Equation I, an estimate of the
aerosol yields (on a mass-basis) under realistic, ambient conditions could be made. For an
initial aerosol concentration (M) of 2 µg/m3 the following yields could be calculated: α-
pinene 3.3 %, β-pinene 1.8 %, and limonene  2.7 %. For an initial aerosol concentration of M
= 10 µg/m3, the following values were calculated: α-pinene 8.7 %, β-pinene 6.4 %  and
limonene: 10.6 %.

The aerosol yields that were measured in this study may be compared to results
presented in the literature, e.g. to the recent, comprehensive study by Hoffmann et al. (1997).
The aerosol yields from the ozonolysis of α- and β-pinene reported in this study seem to be
somewhat higher than those found in the present study, when results obtained under similar
conditions are compared.

A comparison between aerosol yields obtained by photo-oxidation experiments and
ozonolysis experiments showed significantly lower aerosol yields from photo-oxidation,
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suggesting that the OH radical reaction, gives significantly lower aerosol yields than
ozonolysis. This observation is illustrated in Fig. 2, which also shows a comparison between
the aerosol yields from the ozonolysis reaction, performed under different conditions.
Concerning the comparison between photooxidation and ozonolysis it should, however, be
noticed, that the ozonolysis was studied in the absence of NOx,  while NOx (particularly NO)
certainly will influence the degradation pathways of the terpenes in the photo-oxidation runs.
Thus also the influence of [NOx] on aerosol formation may be a reason for the differences
observed between the ozonolysis and photo-oxidation experiments.

Application of the tandem-DMA set-up to the study of the hygroscopic growth of
terpene-derived aerosol from ozonolysis as well as photooxidation experimental runs proved
that these were only slightly hygroscopic (Virkkula et al., 1999). The experiments were
initiated by introducing an ammonium sulphate seed aerosol. The hygroscopic growth factor
(i.e. (particle diameter in humid air)/(particle diameter in dry air)) was approximately 1.5 for

Fig. 2. Aerosol formation from ozonolysis in dry air, ozonolysis with added water,
ozonolysis in dry air with cyclohexane added as an OH scavenger and in two photo-oxidation
experiments (initial NOx was 20 ppbV).

the ammonium sulphate aerosol at 84 % RH. As the oxidation of terpenes took place and the
oxidation products were condensing on the seed particles, the growth factor decreased to
around 1.10. No significant differences between the different terpenes and the different
reaction conditions (ozonolysis versus photo-oxidation) could be observed.

Chemical analysis of aerosols.
Chemical analyses of particles formed by oxidation of terpenes have been performed

and a number of components (particularly organic acids) have been identified. Dicarboxylic
acids, such as pinic acid, appear to be a characteristic constituent of terpene-derived aerosol
resulting from ozonolysis  as well as photo-oxidation (Christoffersen et al., 1997, Glasius et
al., 1998). Such compounds were identified as products of α-pinene, β-pinene, limonene, 3-
carene and sabinene. The measured yields varied from below 1% up to as much as 6 %,
depending on the precursor-terpene and the reaction conditions. Also keto-acids and hydroxy-
acids,  together with dicarbonyl compounds and hydroxy-dicarbonyl compounds  were found
to be significant constituents of aerosol particles collected. Dicarboxylic acids were formed
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also in the experimental runs where cyclohexane was added as an OH-radical scavenger in
ozonolysis experiments, thus demonstrating that there are relevant reaction pathways leading
to formation of these species that do not involve OH radical reactions.
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