EVALUATION OF A GAS-PHASE ATMOSPHERIC MECHANISM FOR LOW NO_x CONDITIONS

William P. L. Carter

College of Engineering Center for Environmental Research and Technology University of California, Riverside, CA 92521

May 27, 2004

- · Background and Objectives
- Environmental Chambers Employed
- · Chamber Effects Characterization
- Evaluation Results
- Modeling assessment of relative rates of low NO_x reactions
- Discussion and Conclusions

W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation

1

BACKGROUND

- Ground-level ozone O₃ is formed in complex reactions of emitted VOCs with NO_x in sunlight
- The mechanisms representing these reactions in models are critical to accurate O₃ control strategy predictions.
- Environmental chamber data provide the best way to test these mechanisms independent of other uncertainties
- However, current mechanisms were evaluated using data with higher NO_v levels than most current ambient conditions.
- This is a concern because the nature of the oxidation processes change as NO_x is reduced.
- Opportunities exist for lower NO_x mechanism evaluation:
 - Existing Low NO_x data from CSIRO and TVA Chambers
 - Experiments from the new UCR EPA Chamber designed for low NO_x evaluations are becoming available

W. P. L. Carter 5/27/04

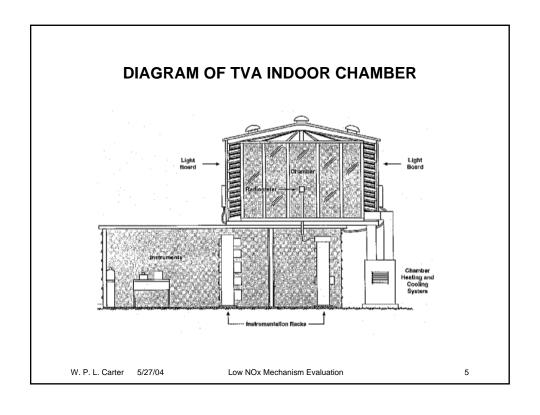
Low NOx Mechanism Evaluation

OBJECTIVES

- Evaluate the SAPRC-99 mechanism (the most up-to-date and detailed mechanism used by the CARB) for low NO_x conditions.
- Obtain and characterize existing TVA and CSIRO chamber data for mechanism evaluation
- Conduct experiments in the new UCR EPA chamber most needed for low $\mathrm{NO_x}$ evaluation
- Evaluate mechanism using available TVA, CSIRO, and UCR EPA chamber data
- Investigate modifications to SAPRC-99 to better represent low NO_{x} conditions
- Recommend research needed to improve mechanism performance

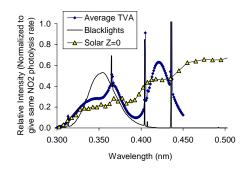
W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation


3

SUMMARY OF ENVIRONMENTAL CHAMBERS USED IN THE LOW NO_{x} EVALUATION

	TVA	CSIRO	UCR EPA	
Volume (m ³)	28	2 x 20	2 x 85	
Walls	FEP Teflon® Film			
Lighting	Fluorescents	Sunlight	Argon Arc	
Number of Experiments	32 Char. 48 Mech Eval	19 Mixture experiments	36 Char 42 Mech Eval	
Dates of Runs	1993-96	1995-1996	2003	
Measured Species Used in Evaluation	O ₃ , NO, CO, HCHO, PAN, VOCs	O ₃ , NO, NO _y -NO	O ₃ , NO, NO ₂ , CO, HCHO, PAN, HNO ₃ , VOCs	


W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation

DISCUSSION OF TVA INDOOR CHAMBER

- Experiments conducted by Simonaitis and Bailey of TVA in 1993 through 1995 for low NO, mechanism evaluation
- Steps taken to reduce background by extensive purging between runs
- 3 types of fluorescent lamps used to approximate solar spectrum
- NO₂ actinometry results averaged 0.392 min⁻¹
- Temperature during runs varied from ~295 - 315 °K
- TVA Chamber no longer operational

 Data made available for modeling by Jeffries and Co-workers for an RRWG project

W. P. L. Carter 5/27/04

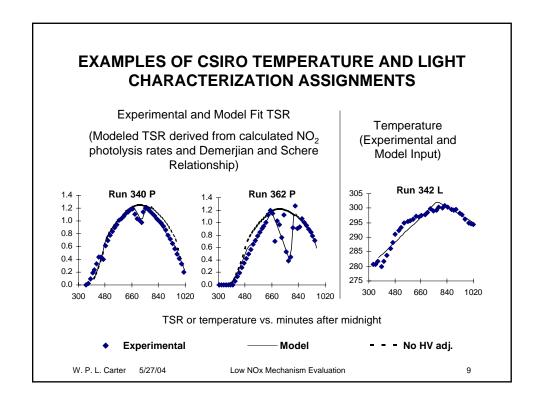
Low NOx Mechanism Evaluation

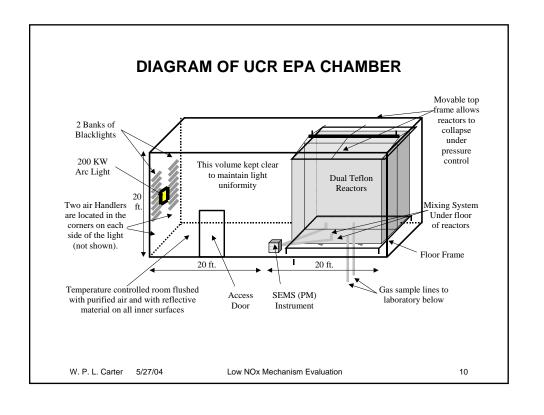
О

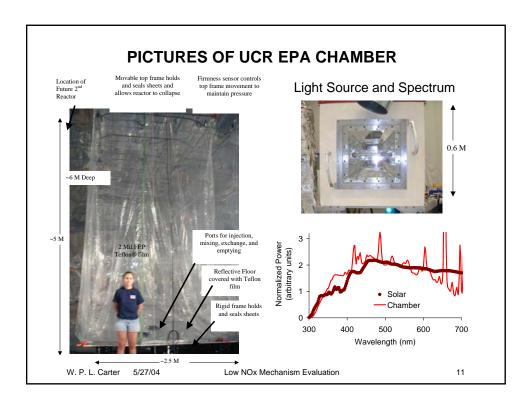
CSIRO OUTDOOR CHAMBERS

W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation


7


DISCUSSION OF CSIRO OUTDOOR CHAMBER


- Located outdoors in a suburb of Sydney, Australia
- Multiple complex surrogate NO_x experiments conducted by Johnson and co-workers to test and derive parameters for Johnson's parameterized "extent of reaction" model
- Data used from 10 dual chamber surrogate experiments conducted in a collaborative project with Jeffries and co-workers
- Data made available for modeling as part of an RRWG project
- · Photolysis rates for modeling derived as follows:
 - NO₂ photolysis rates as function of time estimated from TSR data using relationship of Demerjian and Schere
 - Ratios of other photolysis rates to NO₂ calculated using Peterson (1977) actinic fluxes as function of time of day
- Other characterization parameters estimated based on characterization results for other chambers

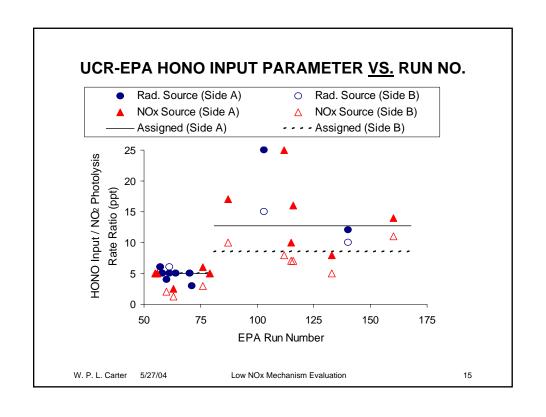
W. P. L. Carter 5/27/04

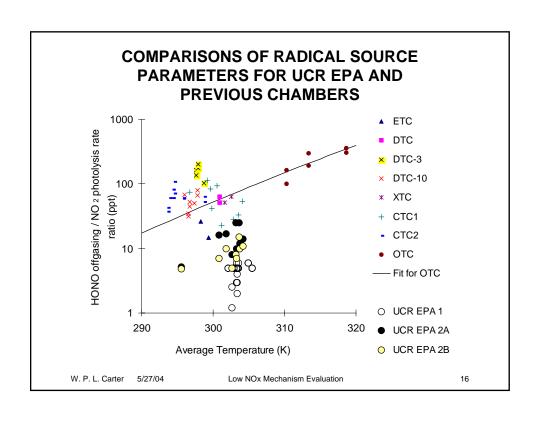
Low NOx Mechanism Evaluation

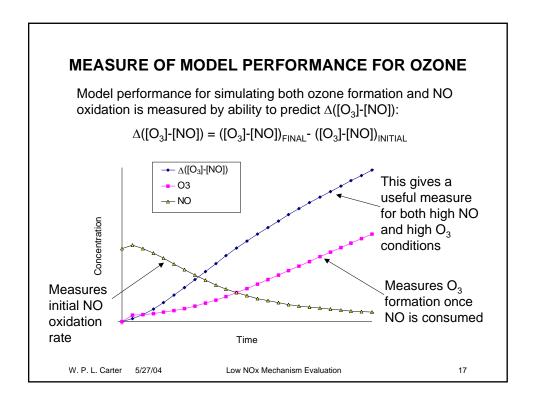
DISCUSSION OF UCR EPA CHAMBER

- Constructed using a \$2.9 Million EPA earmark to develop a "Next Generation" chamber for mechanism evaluation
 - Large volume to minimize background and permit PM studies and instrumentation with large sample requirements
 - Indoor chamber for maximum characterization and control
 - Light source simulating sunlight
 - Low background to permit well-characterized experiments at low pollution levels
 - · Advanced analytical instrumentation
 - Temperature control to $\pm 1^{\circ}$ C in $\sim 5^{\circ}$ $\sim 50^{\circ}$ C range
- Experiments with current configuration began in early 2003:
 - Initial characterization and evaluation runs funded by EPA
 - Very low NO_x surrogate experiments run for this project

W. P. L. Carter 5/27/04


Low NOx Mechanism Evaluation


DERIVATION OF MAJOR CHAMBER CHARACTERIZATION PARAMETERS


Parameter	TVA	CSIRO	UCR EPA	
Continuous Radical source (HONO offgasing)	Negligible compared to high HCHO offgasing	T-Dependent rate assumed to be same as SAPRC OTC or 3 x higher	Model char. runs sensitive to HONO offgasing	
NO _x Offgasing	Model CH ₃ CHO - Air runs	Assume same as radical source	Approx. same as radical source	
HCHO background and offgasing	Model HCHO in CO - NO _x or NO _x - air runs	Assumed to be unimportant compared to R.S.	Model HCHO in char. runs w/o HCHO source	
Initial HONO	Model CO - NO _x , NO _x - Air, and CH ₄ - NO _x runs	No data – varied in evaluation simulations	Model char. runs sensitive to initial HONO	
O3 Decay	Measured	Estimated	Measured	
Dilution	Derived from tracer data	Estimated to be minor	Believed to be low in most runs	
W. P. L. Carter 5/27/04	W. P. L. Carter 5/27/04 Low NOx Mechanism Evaluation 13			

VALUES OF MAJOR CHAMBER CHARACTERIZATION PARAMETERS

Parameter	TVA	CSIRO (varied)	UCR EPA
HONO or NO _x offgasing / NO ₂ photolysis rate ratio	7.2 ppt (as NO _x offgasing only)	Standard: Temp dependent fit for OTC (10-100 ppt) High RS: 3 x Std.	Runs 55-80: 5 ppt Runs 81-168: •Side A: 8.5 ppt •Side B: 12.5 ppt
HCHO offgasing / NO ₂ photolysis rate ratio	HCHO: 45 ppt HCHO precursor: 135 ppt	Assumed to be low compared to other sources	10 ppt
Initial HONO	0.5 ppb	Standard: ~0 High RS: 2 ppb	0.05 ppb
O3 Decay	7% /hour	1.3% /hour	1.1% /hour
Light Intensity	k ₁ = 0.392 min ⁻¹	Standard: Deriv'd from TSR data High: 1.15 x Std.	k ₁ = 0.284 min ⁻¹
W. P. L. Carter 5/27/04 Low NOx Mechanism Evaluation 14			

UCR EPA RUNS AND FITS TO Δ([O₃]-[NO])

Run Type	Runs	NO _x Range	Average Model Fits	
		(ppb)	Bias	Error
Characterization	32	0 - 200	-2%	31%
Formaldehyde - NO _X	2	8 - 25	-23%	23%
Formaldehyde - CO - NO _x	2	15-20	-10%	10%
Ethene - NO _x	2	10 - 25	-15%	15%
Propene - NO _x	2	5 - 25	16%	16%
Toluene or m-Xylene - NO _x	4	5 - 25	10%	10%
Aromatic - NO _x + CO	6	5 - 30	-17%	18%
Ambient Surrogate - NO _x	24	2 - 110	-11%	15%

W. P. L. Carter 5/27/04

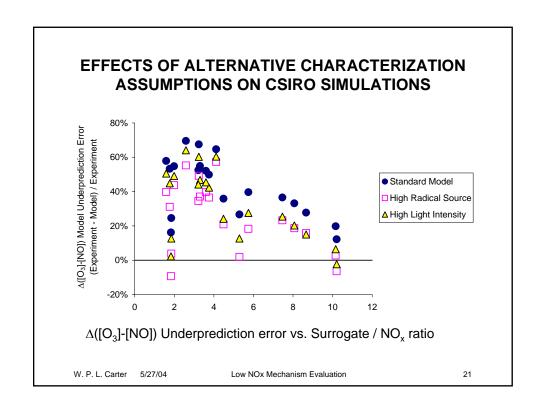
Low NOx Mechanism Evaluation

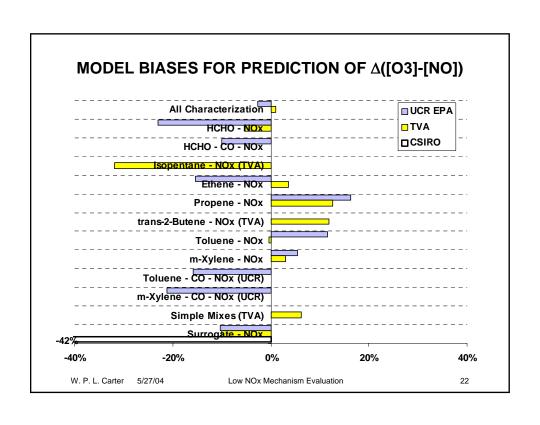
SUMMARY OF <u>TVA RUNS</u> AND FITS TO $\Delta([O_3]-[NO]$

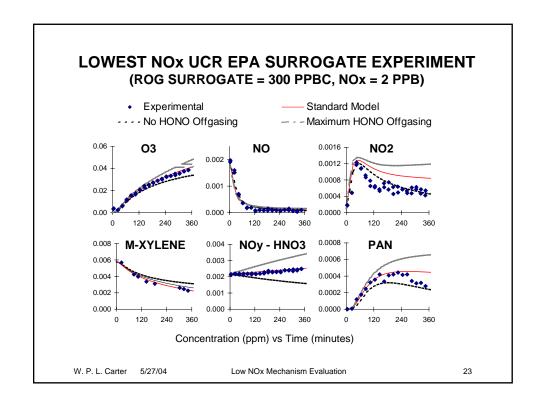
Run Type	Runs	NO _x Range	Average Model Fits	
		(ppb)	Bias	Error
Characterization	32	0 - 54	1%	15%
Formaldehyde - NO _x	4	39 - 42	-4%	10%
Isopentane - NO _x	1	18	-28%	28%
Ethene, Propene, or trans-2-Butene - NO _x	7	22 - 54	10%	10%
Toluene or m-Xylene - NO _x	5	50 - 266	1%	8%
Simple Mixture - NO _x	23	50 - 100	6%	7%
Ambient Surrogate - NO _x	12	25 - 169	-8%	9%

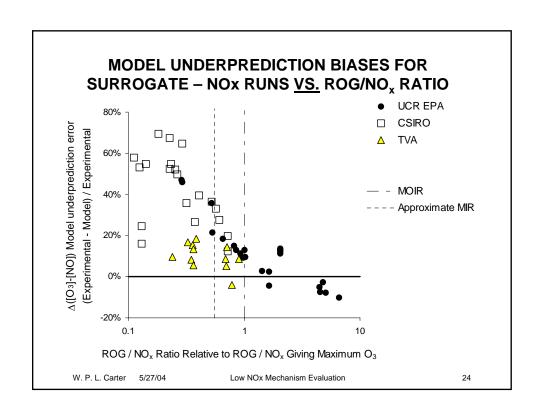
W. P. L. Carter 5/27/04

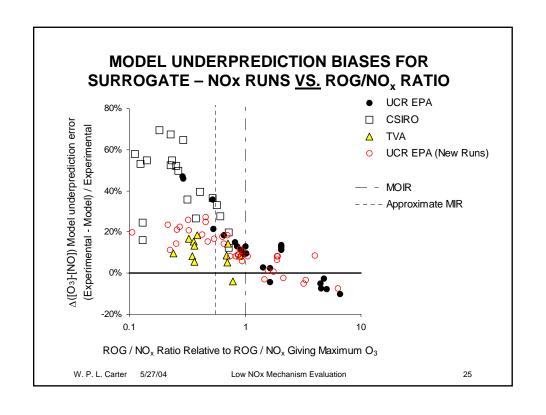
Low NOx Mechanism Evaluation

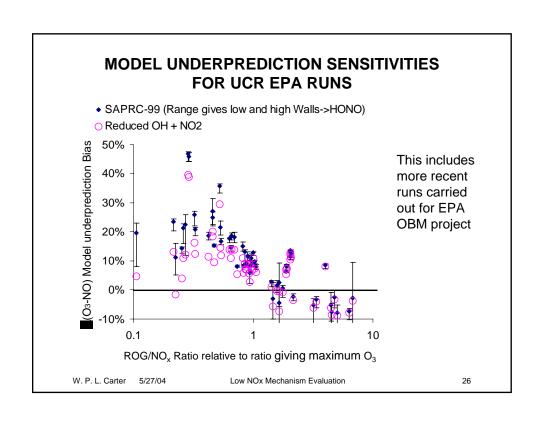

19

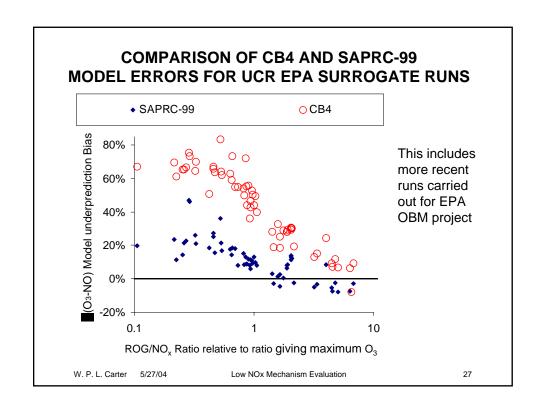

CSIRO RUNS AND FITS TO $\Delta([O_3]-[NO]$

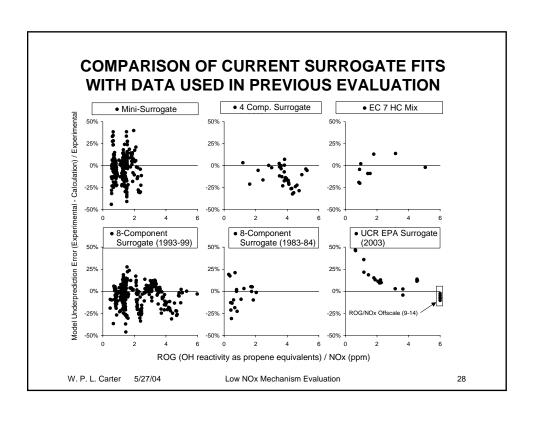

Run Type	Runs	NOx Range	Average Model Fits	
		(ppb)	Bias	Error
Ambient Surrogate – NO _x				
Standard Char. Model	20	17 - 100	-42%	42%
High Radical Source	20	17 - 100	-26%	27%
High Light Intensity			-33%	33%


W. P. L. Carter 5/27/04


Low NOx Mechanism Evaluation

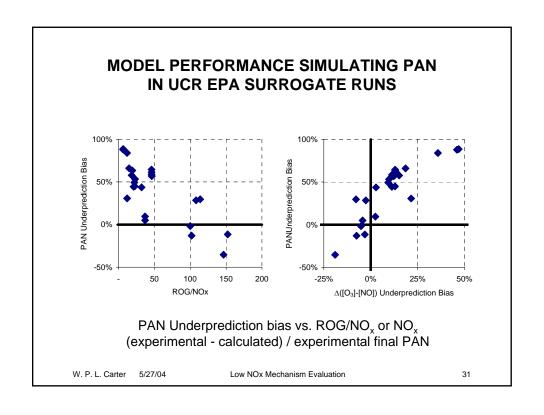


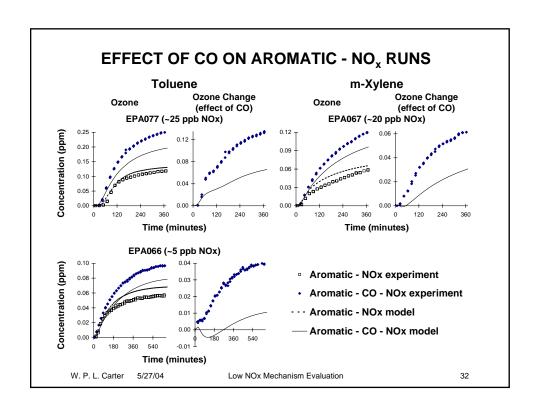


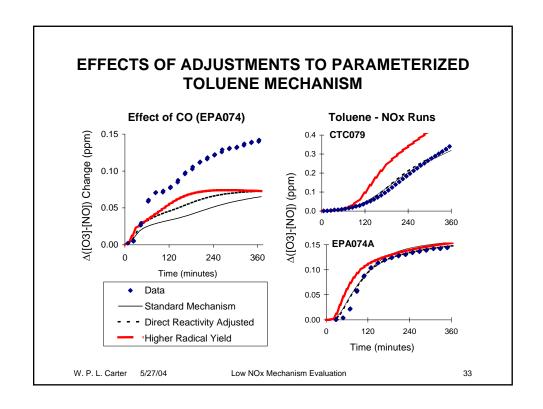


MODEL PERFORMANCE IN SIMULATING OTHER MEASUREMENTS IN SURROGATE RUNS

Compounds	TVA	UCR EPA
NO ₂	No data (NO _Y -NO only)	Tends to underpredict consumption following maximum
PAN	Very significantly underpredicted	Reasonably well simulated in runs where O3 well simulated
Formaldehyde	Tendency to underpredict (depends on offgasing model)	Tendency to underpredict depends on NO _x levels
Reactant VOCs	Generally consistent with data	Tendency to underpredict final consumption rates
HNO ₃	No data	Generally consistent with available data ([NO _x]>50 ppb)

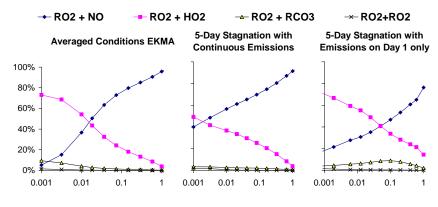

Note: Data for above compounds not available for CSIRO Runs


W. P. L. Carter 5/27/04


Low NOx Mechanism Evaluation

29

MODEL PERFORMANCE SIMULATING FORMALDEHYDE IN UCR EPA SURROGATE RUNS Formaldehyde Increase Underprediction Bias % % % % % Formaldehyde Increase Underprediction Bias % % % % -25% -25% 50 100 150 200 100 150 ROG/NOx NOx (ppb) Formaldehyde Underprediction bias vs. ROG/NO_x or NO_x (experimental - calculated) / experimental ∆[HCHO] W. P. L. Carter 5/27/04 Low NOx Mechanism Evaluation


ASSESSMENT OF NEED TO MODIFY MECHANISM FOR LOW NO_x CONDITIONS

- Lower NO_x levels result in increased importance of peroxy + peroxy reactions, which form different organic products that the peroxy + NO reactions that dominate when NO_x is higher.
- SAPRC-99 uses an approximate "chemical operator" method for RO₂ reactions that neglects this change in products with NO_x
- Representing RO₂+RO₂ reactions more explicitly requires adding many reactions to the mechanism.
- Process analysis calculations were carried out to assess the relative importance of the different types of competing RO₂ reactions at low NO_v
- The results can then be used to assess priorities for mechanism modifications for more accurate low NO_x predictions

W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation

Ratios of integrated reaction rates $\underline{\text{vs.}}$ NO $_{\text{x}}$ inputs relative to NO $_{\text{x}}$ giving maximum O $_{\text{3}}$

W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation

35

IMPLICATIONS CONCERNING HOW TO MODIFY MECHANISMS FOR LOW NO_x CONDITIONS

- Results of test calculations of integrated peroxy radical reaction rates with three types of low NO_x scenarios indicate that:
 - Major low-NO_x sink for peroxy radicals is reaction with HO₂
 - Maximum importance of Alkyl Peroxy + Acyl Peroxy reaction is ~10%
 - Alkyl peroxy + Alkyl peroxy reactions negligible
- Adding reactions or species to improve representations of organic peroxy + peroxy reactions probably not worthwhile
- Higher priority is improving representation of:

$$RO_2 + HO_2 \rightarrow ROOH + O_2$$

ROOH + OH or hy \rightarrow Products

 This requires adding more hydroperoxide species to the mechanism, whose reactions are uncertain.

W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation

DISCUSSION AND CONCLUSIONS: Good News

- Range of conductions where mechanisms have been evaluated has been significantly expanded
 - TVA data of comparable or better quality than previous runs in other chambers, despite formaldehyde contamination
 - CSIRO data proved to be useful in this evaluation, but more characterization information would increase its utility
 - Lower background in UCR EPA chamber permitted useful mechanism evaluation with NO_x as low as ~2 ppb and improves precision of evaluation
 - Simulations of lower NO_x characterization and most simple VOC – NO_x experiments generally satisfactory
- No apparent mechanism problem simulating very low NO_x conditions where maximum O₃ formation potentials achieved.
- Inaccuracies caused by approximate treatment of RO₂+RO₂ reactions in current mechanism are probably not important

W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation

37

DISCUSSION AND CONCLUSIONS: Bad News

- SAPRC-99 mechanism has consistent bias in underpredicting NO oxidation and O₃ formation rates at low ROG/NOx ratios
- Underprediction bias for CB4 even worse
- Significant problems with current aromatics mechanisms:
 - Ozone increase caused by adding CO "radical amplifier" to aromatic – NO_x systems underpredicted by factor of ~2
 - Adjustments to the mechanisms as currently parameterized cannot correct this problem
 - Aromatics mechanism problems may be the cause of the low ROG/NO_x underprediction bias, but this is not certain.
- Improving accuracy of low NO_x organic product predictions for requires explicit treatment of uncertain organic hydroxides

W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation

RESEARCH NEEDS

- The current parameterized aromatics mechanisms need to be reformulated and made consistent with available data
- The underprediction problem at low ROG/NO_x needs to be investigated and resolved
- Data are needed on effects of temperature on ozone and other secondary products. (UCR EPA chamber suitable for this)
- Well-characterized, low NO_x chamber data are needed to develop and test models for secondary PM formation. (UCR EPA chamber also suitable for this)
- SAPRC-99 needs to be updated to be consistent with latest recommendations and made more compatible with SOA models
- A new condensed mechanism, traceable to an updated and evaluated detailed version, needs to be developed to finally replace the out-of-date CB4 mechanism

W. P. L. Carter 5/27/04

Low NOx Mechanism Evaluation