California's Reactivity Program

Eileen McCauley
California Air Resources Board
at

US/ German Ozone/Fine Particle
Science & Environmental Chamber
Workshop

October 4-6, 1999

California Environmental Protection Agency

California's Reactivity Program

- Regulation
- Research
- Internal Reactivity Team
- External Assistance

VOC Regulation

- California has an effective system of mass based VOC controls.
- The SIP relies on with massbased VOC reductions
- regulation provides ozone reductions equivalent to these mass-based controls.

Reactivity and VOC Regulation

- Mass-based controls alone may not be sufficient for attainment.
- Reactivity may provide a cost effective control strategy.
- Reactivity may provide flexibility to industry.

California's Current Use of Reactivity in Regulation

- Needed a way to compare alternatively fueled vehicle's emissions.
- Use of reactivity of vehicle exhaust for comparisons.
- Adopted LEV/CF regulations in late 1990 with Reactivity
 Adjustment Factors, RAF
- RAF = Exhaust Reactivity AFV Exhaust Reactivity CFV

Questions Encountered

- Which Reactivity Scale?
 - MIR
 - Dual control program in CA
 - MIR scale complements NOx controls
- What about uncertainty?
 - Alternative fuels program (LEV/CF)
 - MIRs ~30 70%
 - RAFs ~5 15%

Development of Aerosol Coatings Regulation

- California Low Emissions and Reactivity Regulation for Aerosol Coatings (CLEAR)
- Voluntary alternative to mass based regulation
 - Product MIR = Σ Wt% X MIR
- Current Schedule
 - Public Workshops: late Fall 1999, Winter 2000
 - Public Hearing: Spring 2000

Regulatory Challenges

- Regulation Development
 - Equivalent ozone benefits
 - Enforceable
 - Flexibility
 - Simple
 - Cost Effective

Technical Challenges

- Uncertainty
 - Alternative Fuels Program
 - Relative reactivities reduce uncertainty
 - Consumer Products
 - Majority of inventory are well studied VOCs
 - Adjust MIRs for higher uncert.
- Speciation Profiles
 - Ongoing efforts to improve chemical speciation data

Previous Research

- Our regulations have a significant body of previous research to draw on:
 - Atmospheric Chemistry
 - Mechanism Development
 - Uncertainty Analysis
 - Reactivity Values
 - Speciation Profiles

Current CARB Reactivity Research

- Atmospheric Chemistry of Mineral Spirits
- Development of Improved Reactivity Measurement Methods
- Uncertainty Analysis of Chamber Data
- Peer Review of SAPRC99

Reactivity Research (continued)

- Reactivity of Stationary Source VOCs
- Improved Aerosol Speciation Profiles
- Investigation of Low
 Reactivity Solvents for Use in
 Consumer Products
- Reactivity Values Using Airshed Models

Internal Reactivity Assessment Team

- Review effectiveness of CARB's current uses of reactivity
- Examine the technical basis for quantifying reactivity
- Provide recommendations on how to include reactivity in a coordinated regulatory program

7th International Conference Air Pollution 99

- Papers presented:
 - Assessment of the organic compound reactivity concept for regulatory applications in California
 - Photochemical reactivity of organic compounds in central California: A grid-based modeling study
- Contact: Ajith Kaduwela akaduwel@arb.ca.gov

External Assistance

- Reactivity Scientific Advisory Committee (RSAC)
 - RSAC meeting October 8, 1999
- Reactivity Research Advisory
 Committee (RRAC)

In Summary:

- Properly designed reactivitybased regulations can add flexibility to control strategies.
- Reactivity regulations must provide equivalent ozone reductions as the massbased controls.
- Will continue to fund research to improve our understanding of reactivity