Products and Mechanisms of the Reactions of 1,3-Butadiene with Chlorine Atoms In Air

Weihong Wang and Barbara J. Finlayson-Pitts

Department of Chemistry University of California, Irvine

Introduction

- Cl atoms may be generated by reactions of sea salt particles transported inland with air masses.
- A potential approach to investigate the importance of chlorine atom chemistry in the coastal areas is to identify the products and mechanisms of its reactions with organics, e.g. 1,3-butadiene.
- 1,3-Butadiene is an EPA designated Hazardous Air Pollutant (HAP). One of its major sources is automobile emissions.
- Both 1,3-butadiene and chlorine atoms can be abundant in coastal areas.

GC-MS Experimental Apparatus

Goals

- Elucidate the mechanisms of the reaction of Cl atoms with 1,3-butadiene with or without NO
- Identify unique chlorine-containing products, which could serve as markers for Cl chemistry in coastal areas, from the Clbutadiene reaction

e.g.:

4-chlorocrotonaldehyde (CCA)

chloromethyl vinyl ketone (CMVK)

Gas Chromatogram of Products of 1,3-Butadiene + Cl

• Products were identified by comparison with the retention times and mass patterns of the authentic compounds.

One Example of Peak Identification: Mass Spectra of Peak A and CCA Reference

FTIR Experimental Apparatus

FTIR Spectra of the Cl-Butadiene Reaction and CCA Reference

• 4-Chlorocrotonaldehyde was identified as a product of the Clbutadiene reaction in the presence and absence of NO.

Product Yields

Products	w/NO ($\pm 2\sigma$)	$w/o NO (\pm 2\sigma)$
CCA	35 ± 7 %	35 ± 3 %
CMVK	< 9 %	18 ± 3 %
Acrolein	44 ± 7 %	6 ± 4 %
НСНО	52 ± 7 %	7 ± 1 %
CO	11 ± 4 %	
HC1	12 ± 6 %	
NO_2	$\sqrt{}$	
organic nitrate	\checkmark	
1-chloro-2-hydroxy-3-butene —		$\sqrt{}$
1-chloro-2-butene-4-ol —		$\sqrt{}$

 $[1,3-Butadiene]_0 = 20 \sim 35 \text{ ppm}, \ [Cl_2]_0 = 6 \sim 10 \text{ ppm}, \ [NO]_0 = 13 \sim 20 \text{ ppm}$

- Product yields were determined after ~20% loss of 1,3-butadiene
- No corrections for secondary reactions

Summary

- The yield of CCA is 35 ± 7 % ($\pm 2\sigma$) in the absence or presence of NO.
- CCA could serve as a "marker" for chlorine atom chemistry in coastal areas.
- CMVK formed in the absence of NO, not in the presence of NO.

Acknowledgements

National Science Foundation

Department of Energy

UC Toxic Substances Research & Teaching Program