# **Atmospheric Fate of Unsubstituted Alkoxy and Carbonyl Radicals**

O. Shestakov, S. Jagiella, J. Theloke, H. G. Libuda, and F. Zabel

Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D - 70569 Stuttgart

### Introduction

Alkoxy  $(R_1C(R_2)(R_3)O_{\bullet})$  and Carbonyl  $(RC(\bullet)O)$  radicals are important intermediates in the degradation chain of hydrocarbons. Both classes of radicals are subject to competing reaction chan-nels leading to different products which exhibit different ozone formation potentials:

Alkoxy radicals -

- (1) Reaction with  $O_2$  (**k**<sub>O2</sub>, => aldehyde/ketone + HO<sub>2</sub>);
- (2) thermal decomposition ( $\mathbf{k}_{dis}$ , => aldehyde/ketone + alkyl/H);
- (3) isomerization ( $\mathbf{k}_{iso}$ , => hydroxyaldehyde/hydroxyketone).

Carbonyl Radicals -

- (4) Reaction with  $O_2$  ( $\mathbf{k}_{O2}$ , =>  $RO_2$ , +  $NO_2$  => peroxynitrate (alkyl substituted PAN));
- (5) thermal decomposition ( $\mathbf{k}_{dis}$ , => CO + alkyl).

In the present work, the ratios  $k_{dis}/k_{O2}$  were determined for a number of unsubstituted  $C_4$  and  $C_5$  alkoxy and carbonyl radicals, linear and branched, with the main aim of measuring the effect of branching at the  $\alpha$ -C atom and of the chain length of R on the ratio  $k_{dis}/k_{O2}$ .

## **Experimental**

Experiments are performed in a 12 L temperature controlled photoreactor from stainless steel (Figure 1).



Figure 1. Temperature controlled photoreactor (v = 12 L) from stainless steel

Alkoxy radicals are produced by photolyzing the appropriate iodides in the presence of  $O_2$ , NO, and  $N_2$  as a buffer gas. For example, in the photolysis of 3-iodopentane the following mechanism is effective:

$$\begin{split} C_{2}H_{5}C(H)(I)C_{2}H_{5} + hv(254 \text{ nm}) &=> C_{2}H_{5}C(H)(\bullet)C_{2}H_{5} \\ C_{2}H_{5}C(H)(\bullet)C_{2}H_{5} + O_{2} + M &=> C_{2}H_{5}C(H)(OO\bullet)C_{2}H_{5} + M \\ C_{2}H_{5}C(H)(OO\bullet)C_{2}H_{5} + NO &=> C_{2}H_{5}C(H)(O\bullet)C_{2}H_{5} + NO_{2} \\ C_{2}H_{5}C(H)(O\bullet)C_{2}H_{5} + O_{2} &=> C_{2}H_{5}C(O)C_{2}H_{5} + HO_{2} \\ C_{2}H_{5}C(H)(O\bullet)C_{2}H_{5} + M &=> C_{2}H_{5}CHO + C_{2}H_{5} + M \end{split}$$

The products in bold letters are analyzed by FT-IR absorption (optical pathlength = 2 m), and the rate constant ratios  $k_{dis}/k_{O2}$  are determined using the equation

(I) 
$$\frac{k_{dis}}{k_{O_2}} = \frac{\Delta [C_2 H_5 CHO] \times [O_2]}{\Delta [C_2 H_5 C(O) C_2 H_5]}$$

Carbonyl radicals are formed by stationary photolysis of  $Br_2$  in the presence of the corresponding aldehyde,  $O_2$ ,  $NO_2$ , and  $N_2$  as a buffer gas. The important reactions taking place are:

The products in bold letters are analyzed by FT-IR absorption, and the rate constant ratios  $k_{dis}/k_{O2}$  are determined using the equation

(II) 
$$\frac{k_{dis}}{k_{O_2}} = \frac{\Delta[CO] \times [O_2]}{\Delta[RC(O)O_2 NO_2]}$$

#### **Results and Discussion**

### 1. Alkoxy Radicals

In Figures 2 and 3, the experimental data points are shown for 3-pentoxy. For large O<sub>2</sub> partial pressures, the rate constant ratios  $k_{O2}/k_{dis} = \Delta [C_2H_5C(O)C_2H_5]/(\Delta [C_2H_5CHO]x[O_2])$  (inverse of eq. (I)) approach  $k_{O2}/k_{dis} = (1.32\pm0.33)x10^{-19}$  cm<sup>3</sup> or  $k_{dis}/k_{O2} = (7.6\pm1.9)x10^{18}$  cm<sup>-3</sup>. This value corresponds to the following product distribution at 298 K in synthetic air:

Reaction with  $O_2$  (40 %): 3-pentanone + HO<sub>2</sub>

Thermal decomposition (60 %): propanal +  $C_2H_5$ 



Figure 2. Determination of  $k_{O2}/k_{dis}$  for 3-pentoxy radicals at 298 K, 1 bar (M = N<sub>2</sub> + O<sub>2</sub>) (open points: experimental; full points and broken line: calculated with a simple mechanism)



Figure 3. Determination of  $k_{O2}/k_{dis}$  for 3-pentoxy at 298 K, 1 bar (M = N<sub>2</sub> + O<sub>2</sub>)

The increase of  $k_{O2}/k_{dis}$  at low  $O_2$  partial pressures originates in an additional,  $O_2$  independent source of 3-pentanone the nature of which is still unknown. Possible reactions which can explain this additional formation of 3-pentanone are:

Depending on the nature of the additional 3-pentanone source, the  $O_2$  channel can be larger by 20 % under atmospheric conditions (corresponding to the intercept on the vertical axis in fig. 3). A behaviour similar to that shown in figures 2 and 3 was also observed for the other investigated alkoxy radicals. Further studies on these and other alkoxy radicals are under way.

In table 1, data which have been determined in the present work for 3-pentoxy, 2-butoxy, *i*-butoxy, and 3-methyl-2-butoxy at 298 K are summarized and compared with experimental, semi-empirical and ab-initio values from the literature.

## Table 1. Data on k<sub>dis</sub>/k<sub>O2</sub> at 298 K for selected alkoxy radicals

#### $k_{dis}/k_{O2}$ (298 K) [cm<sup>-3</sup>] Reference Remarks $2.1 \times 10^{18}$ <sup>1)</sup> Carter et al.<sup>2)</sup> complex reaction system $(2.2\pm0.4)$ x10<sup>18-1)</sup> Cox et al.<sup>3)</sup> Mixture of isomers Blitz et al.<sup>4)</sup> $1.9 \times 10^{18}$ 2-butoxy from 2-butyl nitrite + hv $(3.6\pm2.1)\times10^{18}$ Hein et al. <sup>5)</sup> pure 2-butoxy isomer $3.7 \times 10^{18}$ Somnitz, Zellner<sup>6)</sup> ab-initio calculation $2.5 \times 10^{18}$ Atkinson<sup>7)</sup> semi-empirical $(2.9\pm0.6)x10^{18}$ pure 2-butoxy isomer this work

#### 2-Butoxy

#### *i*-Butoxy

| $k_{dis}/k_{O2}(298 \text{ K}) \text{ [cm}^{-3}\text{]}$ | Reference              | Remarks                                                                                                        |
|----------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|
| $1.3 \times 10^{18}$                                     | Atkinson <sup>7)</sup> | semi-empirical, with IUPAC value <sup>8)</sup> for the heat of formation of $i$ -C <sub>3</sub> H <sub>7</sub> |
| $6.2 \times 10^{18}$                                     | Atkinson <sup>7)</sup> | semi-empirical, with JPL value <sup>9)</sup> for the heat of formation of $i$ -C <sub>3</sub> H <sub>7</sub>   |
| $(5.9\pm1.7)$ x10 <sup>18</sup>                          | this work              | pure <i>i</i> -butoxy isomer                                                                                   |

## 3-Methyl-2-butoxy

| $k_{dis}/k_{O2}(298 \text{ K}) \text{ [cm}^{-3}\text{]}$ | Reference              | Remarks               |
|----------------------------------------------------------|------------------------|-----------------------|
| 8.6x10 <sup>19</sup>                                     | Atkinson <sup>7)</sup> | semi-empirical        |
| $(6.7\pm1.8)$ x10 <sup>19</sup>                          | this work              | pure 3-pentoxy isomer |

#### **3-Pentoxy**

| $k_{dis}/k_{O2}(298 \text{ K}) \text{ [cm}^{-3}\text{]}$ | Reference                      | Remarks               |
|----------------------------------------------------------|--------------------------------|-----------------------|
| $(3.8^{+3.8}_{-1.9}) \times 10^{18}$                     | Atkinson et al. <sup>10)</sup> | Mixture of isomers    |
| $8.0 \times 10^{18}$                                     | Somnitz, Zellner <sup>6)</sup> | ab-initio calculation |
| $5.3 \times 10^{18}$                                     | Atkinson et al. <sup>7)</sup>  | semi-empirical        |
| $(7.6\pm1.9)$ x10 <sup>18</sup>                          | this work                      | pure 3-pentoxy isomer |

**References and notes:** <sup>1)</sup> original value extrapolated to 298 K; <sup>2)</sup> W.P.L. Carter, A.C. Lloyd, J.L. Sprung, J.N. Pitts, Jr., Int. J. Chem. Kinet. 11(1979)45; <sup>3)</sup> R.A. Cox, K.F. Patrick, S.A. Chant, Environ. Sci. Technol. 15(1981) 587; <sup>4)</sup> M.A. Blitz, M.J. Pilling and P.W. Seakins, 15<sup>th</sup> Int. Symp. on Gas Kinetics, 1998, Bilbao; <sup>5)</sup> H. Hein, H. Somnitz, A. Hoffmann, R. Zellner, CMD- Konferenz, Karlsruhe, 1998; <sup>6)</sup> H. Somnitz, R. Zellner, 15<sup>th</sup> Int. Symp. on Gas Kinetics, 1998, Bilbao; <sup>7)</sup> R. Atkinson, J. Phys. Chem. Ref. Data 26(1997)215; <sup>8)</sup> R. Atkinson et al., J. Phys. Chem. Ref. Data 26(1997)521; <sup>9)</sup> W.B. DeMore et al., JPL Publication 97-4, Pasadena, 1997; <sup>10)</sup> R. Atkinson, E.S.C. Kwok, J. Arey, S.M. Aschmann, Faraday Discuss. 100(1995)23 In table 2, all the alkoxy radicals  $HC(R_1)(R_2)O$  are listed for which isomerization via a sixmembered transition state is impossible and thus intramolecular H atom migration is unlikely (see e.g. [1,2]). During thermal decomposition, the larger (or equally large) fragment (here:  $R_2$ ) generally leaves the alkoxy radical as an alkyl radical whereas the smaller (or equally large) fragment (here:  $R_1$ ) ends up as the carbonyl compound  $R_1C(O)H$ . Table 2 supports the assumption underlying the semi-empirical method to estimate  $k_{dis}$  of Atkinson [1] that it is the size of the alkyl radical R<sub>2</sub> being released during thermal decomposition which predominantly determines the thermal lifetime of the alkoxy radical rather than the size of the aldehydic product  $R_1C(O)H$ . Moreover, however, table 2 shows that the atmospheric fates of alkoxy radicals with identical  $R_2$  also may depend on the nature of  $R_1$  even if  $R_1 \neq H$  (see 2-butoxy vs. 3-pentoxy).

Alkoxy radicals  $HC(R_1)(R_2)O$  for which isomerization is unimportant Table 2. because the formation of a 6-center transition state is impossible

| $HC(R_1)(R_2)O$               | $\mathbf{R}_1$                          | <b>R</b> <sub>2</sub>                   | $k_{dis}/(k_{O2}x[O_2])$ for 1 bar of synth. air, 298 K |  |
|-------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------|--|
|                               |                                         |                                         |                                                         |  |
| Ethoxy                        | Н                                       | CH <sub>3</sub>                         | $0.000053^{-(1)+2)}$                                    |  |
| Propoxy                       | Н                                       | $C_2H_5$                                | $0.0075^{-(1)+2)}$                                      |  |
| <i>i</i> -Butoxy              | Н                                       | <i>i</i> -C <sub>3</sub> H <sub>7</sub> | 1.19 (this work)                                        |  |
| 2,2-Dimethylpropoxy           | Н                                       | <i>t</i> -butyl                         |                                                         |  |
| <i>i</i> -Propoxy             | CH <sub>3</sub>                         | CH <sub>3</sub>                         | $0.024^{-3)+2}$                                         |  |
| 2-Butoxy                      | CH <sub>3</sub>                         | $C_2H_5$                                | 0.44 (this work)                                        |  |
| 3-Methyl-2-butoxy             | CH <sub>3</sub>                         | <i>i</i> -C <sub>3</sub> H <sub>7</sub> | 13.3 (this work)                                        |  |
| 3,3-Dimethyl-2-butoxy         | CH <sub>3</sub>                         | <i>t</i> -butyl                         |                                                         |  |
| 3-Pentoxy                     | $C_2H_5$                                | $C_2H_5$                                | 1.47 (this work)                                        |  |
| 2-Methyl-3-pentoxy            | $C_2H_5$                                | <i>i</i> -C <sub>3</sub> H <sub>7</sub> |                                                         |  |
| 2,2-Dimethyl-3-pentoxy        | $C_2H_5$                                | <i>t</i> -butyl                         |                                                         |  |
| 2,4-Dimethyl-3-pentoxy        | <i>i</i> -C <sub>3</sub> H <sub>7</sub> | $i-C_3H_7$                              |                                                         |  |
| 2,2,4-Trimethyl-3-pentoxy     | $i-C_3H_7$                              | <i>t</i> -butyl                         |                                                         |  |
| 2,2,4,4-Tetramethyl-3-pentoxy | <i>t</i> -butyl                         | <i>t</i> -butyl                         |                                                         |  |

#### **References:**

<sup>1)</sup> H. Somnitz, R. Zellner, 15<sup>th</sup> Int. Symp. on Gas Kinetics, 1998, Bilbao; <sup>2)</sup> R. Atkinson, J. Phys. Chem. Ref. Data 26(1997)215; <sup>3)</sup> P. Devolder et al., PCCP1(1999)675.

For atmospheric applications,  $k_{dis}/(k_{O2}x[O_2])$  values between  $\approx 0.1$  and  $\approx 10$  (last column in table 2) are most interesting since here the competition between channels (1) and (2) is most effective.

## 2. Carbonyl Radicals

Experimental results on  $k_{dis}/k_{O2}$  at 1 bar,  $M = O_2 + N_2$  are summarized in table 3. Since experimental data on the recombination of acetyl radicals with  $O_2$  [2] suggest that there is no notable barrier for reaction (4), the temperature dependence of  $k_{dis}/k_{O2}$  is considered to be strongly dominated by the temperature dependence of  $k_{dis}$ . Adopting the  $k_{O2}$  value for CH<sub>3</sub>CO radicals at 298 K and high pressures,  $k_{O2} = 3.2 \times 10^{-12} \text{ cm}^3 \text{s}^{-1}$  [3], for the larger carbonyl radicals,  $k_{dis}$  can be calculated from the measured ratios  $k_{dis}/k_{O2}$ . The resulting thermal decomposition rate constants  $k_{dis}$  are collected in table 4. The data at 298 K for all radicals except pivaloyl (where the 298 K value has been measured) were obtained by extrapolation from the values measured at 317 K, using the experimental activation energy for *i*-butyryl from Tomas et al. [4].

| RCO                                                       | $k_{dis}/k_{O2}$<br>[10 <sup>15</sup> cm <sup>-3</sup> ] |              |            |
|-----------------------------------------------------------|----------------------------------------------------------|--------------|------------|
|                                                           | 317 K                                                    | 307 K        | 298 K      |
| <i>n</i> -C <sub>3</sub> H <sub>7</sub> -CO               | < 0.7                                                    |              |            |
| $n-C_4H_9-CO$                                             | < 0.7                                                    |              |            |
| CH <sub>3</sub> C(H)(CH <sub>3</sub> )CH <sub>2</sub> -CO | $1.0 \pm 0.5$                                            |              |            |
| CH <sub>3</sub> C(H)(CH <sub>3</sub> )-CO                 | $12.6 \pm 1.8$                                           |              |            |
| C <sub>2</sub> H <sub>5</sub> C(H)(CH <sub>3</sub> )-CO   | 16.4 +4.1 -3.1                                           |              |            |
| (CH <sub>3</sub> ) <sub>3</sub> C-CO                      | 275 <sup>+55</sup> - <sub>38</sub>                       | $154 \pm 21$ | 92 +24 -17 |

## Table 3. Experimental data on k<sub>dis</sub>/k<sub>O2</sub>

| RCO                                     | $k_{dis} [s^{-1}]$ , this work <sup>1</sup> |                      |  |
|-----------------------------------------|---------------------------------------------|----------------------|--|
|                                         | 317 K                                       | 298 K                |  |
| <i>n</i> -butyryl                       | < 2,300                                     | < 700 <sup>2)</sup>  |  |
| <i>n</i> -pentanoyl                     | < 2,300                                     | < 700 <sup>2)</sup>  |  |
| 3-methylbutyryl                         | 3,200                                       | 1,000 2)             |  |
| 2-methylpropionyl (= <i>i</i> -butyryl) | 40,300                                      | 12,100 <sup>2)</sup> |  |
| 2-methylbutyryl                         | 52,500                                      | 15,800 <sup>2)</sup> |  |
| pivaloyl                                | 880,000                                     | 295,000              |  |

Table 4. Estimated data on  $k_{dis}$ , total pressure 1 bar,  $M = O_2 + N_2$ 

Notes:

<sup>1)</sup> with  $k_{02} = 3.2 \times 10^{-12} \text{ cm}^3 \text{s}^{-1}$  [3]; <sup>2)</sup> extrapolated from higher temperatures with  $E_a = 49.6 \text{ kJ mol}^{-1}$  from Tomas et al. [4]. The present data at 298 K are higher for pivaloyl and *i*-butyryl than recent data of Tomas et al. [4] and much lower than early values by Cadman et al. [5,6]. The major part of these discrepancies may be due to the long range of extrapolation necessary to convert the rate constants of refs. 4-6 from the high temperatures of the experiments to 298 K.

The data in tables 3 and 4 show that

- (i)  $k_{dis}$  increases by about a factor of 15 for each H atom connected to the  $\alpha$ -C-atom in CH<sub>3</sub>CO which is replaced by a methyl group (corresponding to increasing branching of R);
- (ii) even for the thermally most unstable radicals of table 4, i.e. pivaloyl, only 1.8 % decompose rather than add O2 at 298 K in dry air.

## **Future Work**

Work on alkoxy and carbonyl radicals will be continued, using both the photoreactor shown in fig. 1 and a new reaction chamber from quartz (figure 4) which is under construction and close to being finished. It consists of two concentric quartz tubes with teflon-coated end flanges from stainless steel. The space between the quartz tubes is filled with the cooling agent (silicon oil); photolysis lamps are placed around the outer quartz tube. The quartz tube (v = 190 L) has several advantages as compared to the cell from stainless steel:

- (i) More homogeneous distribution of temperature and photolysis light intensity;
- (ii) larger sensitivity due to longer light paths (by a factor of 20 both in the IR and UV/VIS);
- (iii) much better volume:surface ratio;
- (iv) less reactive wall materials.

The final experimental set-up is shown in figure 5.



Figure 4. Sketch of the 190 L photoreactor from quartz



Figure 5. Experimental set-up for the investigation of UV spectra of gaseous compounds and of the kinetics of chemical reactions in the gaseous phase, using a diode array spectrometer and an FT-IR spectrometer

- [1] R. Atkinson, J. Phys. Chem. Ref. Data 26(1997)215-290
- [2] H. Somnitz, R. Zellner, 15<sup>th</sup> Int. Symp. on Gas Kinetics, 1998, Bilbao
- [3] R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, M. J. Rossi, J. Troe, J. Phys. Chem. Ref. Data 28 (1999)191-393
- [4] A. Tomas and R. Lesclaux, 15<sup>th</sup> Int. Symp. on Gas Kinetics, 1998, Bilbao
- [5] C. D. P. Cadman, A. F. Trotman-Dickenson, and A. J. White, J. Chem. Soc. (A) (1970)3189-3193
- [6] P. Cadman, C. Dodwell, A. F. Trotman-Dickenson, and A. J. White, J. Chem. Soc. (A) (1970)2371-2376