SOA Formation: Chamber Study and Model Development

William P. L. Carter College of Engineering Center for Environmental Research and Technology (CE-CERT) University of California, Riverside, CA December 14, 2012

Outline

- Background and Objectives
- Approach: Overall and Current Phase
- Experimental Methods and Results
- Mechanism Updates, Development and Evaluation Results
- Discussion and Recommendations

Problem Statement

- Fine particle (PM) formation is a major air quality problem
- Secondary Organic Aerosol (SOA), formed from emitted VOCs reacting in air in sunlight, is an important component of PM
- Development of effective control strategies for PM requires an ability to predictively model how SOA formation depends on
 - Chemical composition and reactivity of the emitted VOCs
 - Other pollutants such as NO_x, other VOCs and PM sources
 - Conditions such as temperature, humidity and dilution
- SOA formation is complex, incompletely understood, and expected to be highly dependent on atmospheric conditions
- Current models predict SOA using simplified parameterized models based on limited data and unverified assumptions
- Available laboratory and environmental chamber data are insufficient to develop and evaluate predictive SOA models

Background

• SOA yields have been measured for a number of VOCs and analyzed assuming a simple equilibrium partitioning model

"Two Product" Model

$$Y = PM \left(\frac{\alpha_1 K_{p1}}{1 + K_{p1} PM} + \frac{\alpha_2 K_{p2}}{1 + K_{p2} PM} \right)$$

$$Y = yield (SOA/VOC reacted)$$

$$PM = mass of organic PM present$$

$$\alpha = SOA precursor yield$$

$$K_p = equilibrium partitioning$$

- The α , K_p's adjusted to fit SOA yields in chamber experiments
- Two product model is generally used, though in many cases the data are insufficient to support deriving 4 parameters
- The α 's are assumed to be independent of reaction conditions
- The PM values are adjusted for PM wall loss
- Limited data available on temperature dependence of the K_p's

Example of Published SOA Yield Data for Aromatics

- Significant SOA formation from aromatics, but varies with compound
- Data are fit assuming condensable product yields (α_1 , α_2) are independent of reaction conditions.

SOA Yields from m-Xylene Under A Wider Range of Conditions

PM Mass (corrected for wall loss) (μ g/m³)

• Data indicate SOA yields depend on NO_x and other conditions

Overall Objective

• Develop and evaluate process-based mechanisms for SOA formation for more reliable PM predictions in regulatory models.

Overall Approach

- Add SOA prediction capability to the SAPRC mechanism
- Use results of *well-characterized* environmental chamber experiments to develop and evaluate mechanism
 - Review and utilize existing available chamber data with sufficient characterization information
 - Conduct new experiments in the UCR EPA chamber most needed for model development and evaluation
- Initial focus on aromatics, believed to be the largest source of *anthropogenic* SOA.

Summary of Previous Work at UCR

- A number of chamber experiments have been conducted in the UCR chamber assessing SOA from aromatics
 - Focus has been on m-xylene but experiments with other aromatics and a few aromatic products were conducted
 - The results indicated that current models do not predict how aromatic SOA yields vary with chemical conditions
- A preliminary PM-SAPRC-07 mechanism was developed for m-xylene. The results indicated that more work was needed
 - No single adjusted model fit all the data
 - Data needed to assess role of cresol products
 - Data needed for other aromatic compounds
- This preliminary database and modeling effort served as the starting point for the work for this project.

Long Term Approach for SOA Modeling

- Obtain mechanism evaluation data for representative individual SOA precursors under a wide variety of conditions
- Use results to develop and evaluate mechanistic models for each VOC studied representing the important processes
- Test the mechanisms for mixtures under a variety of reactant, temperature, humidity, and PM conditions
- Use the results to derive scientifically-based lumped mechanisms for ambient modeling
- Not possible to do all this properly in one 3-year project
 - A large number of experiments are needed to obtain data on effects of varying conditions for the many compounds
 - Aromatic reactivity varies significantly with compound, so a full variety of compounds need to be studied
 - Other types of compounds besides aromatics (e.g., terpenes, other high heavy VOCs) need to be studied.

Phased Approach to Developing Predictive SOA Mechanisms

- First Phase (this project)
 - Focus on studying how aromatic SOA depends on compound and reactant concentrations
 - Obtain data on all C₆ through C₉ alkylbenzene isomers to assess how SOA reactivity depends on structure
 - Obtain data on phenols, major oxidation products known to be important contributors to aromatic SOA
 - Obtain comprehensive data on reactant levels (no NO_x and NO_x varied, varied VOC, lights, and added VOCs
 - Focus on single temperature (~300K) and dry conditions in this phase to allow for comprehensive data on reactants. Also simplifies characterization
- Subsequent phases would focus on other types of VOCs and effects of temperature, humidity, PM, and mixtures
- Final phase would focus on developing lumped mechanisms W. P. L. Carter 12/10/2012 Chamber and Model Study of SOA Formation

Experiments Carried Out and Modeled

- Total of 316 mixture irradiations (158 dual reactor experiments) carried out in the UCR chamber for this project, of which 40 were used for characterization and 215 judged suitable for modeling
 - All carried out with blacklights (NO₂ photolysis rate varied from 0.13 to 0.4 min⁻¹). UCR Arc light no longer functional
- Total of 98 UCR chamber irradiations from previous projects (mostly with m-xylene) were also judged suitable for modeling
 - 22 used arc lights, rest used blacklights
- 313 irradiations used for mechanism evaluation
 - 40% were aromatic H_2O_2
 - 52% were aromatic $NO_x (NO_x = ~10 500 \text{ ppb})$
 - 8% were aromatic NO_x with added CO or other VOC
 - All modeled experiments were dry and with $T \approx 300$ K.
 - Runs with characterization problems or questionable PM data were excluded

Numbers of Aromatic SOA Irradiations Judged Suitable for Modeling

Aromatic Compound	VOC - NO _x	VOC - H ₂ O ₂	2 nd Cmpd
Benzene	10	6	1
Toluene	11	5	4
Ethyl Benzene	4	4	-
m-Xylene	50	33	20
Other Xylenes (2)	15	11	-
Propyl Benzenes (2)	6	10	-
Ethyl Toluenes (3)	29	18	-
Trimethyl Benzenes (3)	25	10	-
Phenol	4	5	-
o-Cresol	6	5	-
Other Cresols (2)	-	7	-
2,4-Dimethyl Phenol	4	5	-
Other Xylenols (2)	-	5	-

Diagram of the UCR EPA Chamber

Measurement Data Used

- Measurements used for gas-phase mechanism evaluation
 - Ozone, NO, NO_v, CO -- commercial instrumentation
 - Reacting VOCs commercial GC-FID instruments
 - Temperature sensors attached to data acquisition system
 - NO₂ actinometry in and out of reactors quartz tube method
 - Dilution tracer (C_6F_{14}) measured by GC-FID
- Scanning Mobility Particle Spectrometer (SMPS) used to measure PM volume and number
 - Information on size distribution in 28-720 nm range. Size distributions used to derive total PM number and volume
 - Density of 1.4 gm/cm³ assumed based on previous studies

Other PM chemical characterization measurements were made during most experiments, but results not used in this work. These data were analyzed for other projects and are available for future modeling efforts

Characterization Data Used

- Same characterization standards as used for gas-phase evaluations, with additional characterization for PM
- NO₂ actinometry experiments used to measure light intensity
- CO air and CO NO_x irradiations used to derive apparent HONO offgasing rates (background radical and NO_x sources)
- PM (~0.1 2 μm³/cm³) formed in most pure air irradiations. No PM in dark or when OH low. Background PM attributed to:

 $\begin{array}{l} \mbox{Walls + } h\nu \rightarrow \mbox{PM precursor} \\ \mbox{PM precursor + OH} \rightarrow \mbox{Low Volatility material} & (fast reaction) \\ \mbox{Low Volatility material} \rightarrow \mbox{PM} & (high K_p \mbox{assumed}) \end{array}$

- Wall losses of PM derived for each experiment to fit loss rates of PM numbers once nucleation ended.
- Side equivalency and reproducibility tests conducted

Variability of PM Wall Loss Rates in UCR Chamber

- Large variability from run to run
- May be slightly higher for more recent runs
- May be slightly lower with low PM levels

W. P. L. Carter 12/10/2012 Chamber and Model Study of SOA Formation

Examples of SOA Yield Data

Plots of High PM Limit SOA Yields for Aromatic - H₂O₂ Runs

- Data fit using one-product equilibrium partitioning model with $K_p = 0.02 \text{ m}^3/\mu g$ (best fit in most cases)
- Two-product model does not give better fits to the data

W. P. L. Carter 12/10/2012 Chamber and Model Study of SOA Formation

Summary of Mechanism Development

Gas-Phase Mechanism Development (PTSD Project)

- SAPRC-07 detailed mechanism used as the starting point
 - Individual VOCs explicit, most organic products lumped
- SAPRC-11 aromatics mechanism developed
 - Same lumping approach as detailed SAPRC-07
 - Base and non-aromatic VOC mechanisms mostly unchanged
 - Aromatics mechanisms revised to better fit new gas-phase chamber data, including data from this project.
 - Documented in separate report to CARB, paper in preparation

Aromatic SOA Mechanism Development (RD Project)

- Lumped SOA precursor model species added to SAPRC-11 as needed to predict how SOA affected by reaction conditions
- Derived and adjusted using UCR chamber data from this project

Overview of SAPRC-11 Gas-Phase Aromatics Mechanism

- Minor corrections to reactions of acetylene and glyoxal, and reactions of acyl peroxy radicals with HO₂
- Aromatic mechanisms revised, but same general approach (lumped unknown products, parameters adjusted to fit data)
 - Rate constants, known product yields updated
 - New parameterized mechanisms for phenol, cresols, and xylenols derived to fit new chamber data for this project
 - Much better fits to results of many new aromatic NOx experiments, especially at lower concentrations
- Most inconsistencies and problems with SAPRC-07 remain
 - OH radical levels still significantly underpredicted
 - Chamber data for benzene and toluene have greater dependence on NO_x than indicated by product studies
- Lumped SAPRC-11 for airshed models not yet developed

Features of SAPRC-11 Aromatic Reactions

Problem with NO₂ Dependences on Benzene and Toluene Model Fits

- Benzene and toluene models adjusted for runs with $NO_x < 100$ ppb overpredict O_3 formation rates at higher NO_x
- Data can be fit if the OH-aromatic adduct reacts with NO or NO₂ to form less reactive products than the adduct + O_2 reaction.
- The NO_x levels where the NO_x reaction compete with the O_2 reaction are not consistent with laboratory product yield data.

Compound(s)	Fits Chamber Data	Derived from Lab Studies
Benzene	~ 10 ppb NO ₂	~ 1 ppm NO ₂
Toluene	~ 200 ppb NO ₂	~ 3 ppm NO ₂
Most others	(Reaction not needed)	Higher NO ₂

- NO_x -dependent reaction is not included in standard SAPRC-11. Parameters adjusted using only experiments with $NO_x < 90$ ppb
 - Appropriate for current ambient NO_x conditions

Average Model Biases for Compounds: Ozone Formation and NO Oxidation Rates

Average Model Biases for Compounds: Integrated OH Levels

Problem with underprediction of OH persists

Photoreactive Dicarbonyls: Yields and Adjusted Quantum Yields

Compound

Benzene

Toluene

Ethyl benzene n-Propyl benzene Isopropyl benzene

o-Xylene o-Ethyl toluene

m-Xylene m-Ethyl toluene

p-Xylene p-Ethyl toluene

1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene

OH Adjustments for SOA Modeling

- Gas-phase aromatics mechanisms consistently underpredict OH radical levels and amounts of aromatic reacted
- OH underprediction bias probably less important in ambient simulations because of more varied ambient OH sources
- This will lead to biases when adjusting yield parameters to fit SOA data (adjusted model may overpredict ambient SOA)
- Therefore, OH levels are adjusted to force model to fit amounts of aromatic hydrocarbon reacted when modeling SOA formation
- These adjustments are necessary for almost all aromatic– NO_x experiments but not for most aromatic H₂O₂ runs
- These adjustments are not possible for phenolic NO_x experiments because of loss of phenolic by reaction with NO_3
 - But generally the model gives reasonably good fits to amounts of phenolic compound reacted in such runs

Example of OH Adjustments for SOA Modeling

Toluene – NO_x Experiment EPA289B Experimental. **Unadjusted Model** OH Adjusted Model Corrected PM ($\mu m^3/cm^3$) OH (ppt) Toluene (ppm) 0.24 0.3 30 0.22 25 0.20 0.2 20 0.18 15 0.1 0.16 10 0.14 5 0.0 0.12 360 0 240 360 480 0 120 240 480 0 120 240 360 480 Irradiation time (minutes)

OH adjusted for various time segments to fit rates of toluene consumption

Concentration

27

Development of the SAPRC-11 Aromatic SOA Mechanism

- Lumped SOA precursor model species are added as needed to mechanism as to predict how SOA affected by reaction conditions
- No more SOA species added than needed to represent overall processes and fit available data.
 - Insufficient information to support for more detail.
- Four SOA species used to represent five types of processes
 - 2 used for SOA from phenolics, 2 for SOA from other products
 - 2 used for hydroperoxides (ROOH's), 2 for other products
 - Other processes either not necessary or did not fit data
- Yields and K_p 's of SOA species adjusted to fit chamber data
 - K_p's adjusted to minimize dependences of fits on PM levels
 - Yields adjusted first for phenol, o-cresol, 2,4-xylenol
 - Yields of the non-phenolic SOA species adjusted for each of the 14 C₆-C₉ alkylbenzenes studied

Aromatic SOA Processes Used

Model Fits for All Experiments used to Derive Aromatic SOA Parameters

Distribution of Bias Ranges in PM Volume Predictions for all Experiments Modeled

Chamber and Model Study of SOA Formation

Optimized SOA Parameters for Phenols

Type of	From	K _p	Adjusted Product Yields			
Precursor	Rxn	(m³/µg)	Phenol	Cresols	Xylenols	Catechols
ROOH	OH	High	2%	4%	21%	-
Other	OH	0.03	~0%	10%	12%	33%
Both	NO ₃	-	(Best fit if assumed negligible)			

Average relative contributions of SOA species to experimental PM

Compound	NO _x Runs	H ₂ O ₂ Runs		
Phenol	Almost all	13%	ROOH	
o-Cresol	due to non- ROOH	18%	Contribution	
2,4-Dimethyl Phenol	precursors	47%		

Effects of Varying K_p for Hydroperoxide on Average Biases for m-Xylene – H_2O_2 Runs

Effects of Varying K_p for Hydroperoxide on Model Fits for m-Xylene Experiments

Summary of Volatility Partitioning Coefficient Parameters Used

Species Type	Formed From	Mechanism Type	Kp (m³/μg)	Derivation
ROOH	HC's	Hydroperoxide	0.02	Yield curve fits to H ₂ O ₂ Runs *
ROOH	HC's	Hydroperoxide	0.1	Model fits to data **
ROOH	Phenols	Hydroperoxide	High	Assumed ***
Other	Non- Phenols	NO _x Product	0.04	Model fits to data **
Other	Phenols	NO _x Product	0.03	Model fits to data **

* Derived from 1-product model fits. Not used for kinetic mechanism

** Adjusted to minimize dependence of model bias on PM levels

*** Assumed to be non-volatile because insufficient data available to adjust. K_p for RAOOHp should be higher than for RAOOH.

Relative Contributions of Phenolic Products to SOA from Aromatic Hydrocarbons

Averages calculated for aromatic - NO_x and Aromatic - H_2O_2 runs Predicted using parameters adjusted to fit SOA chamber data

W. P. L. Carter 12/10/2012 Chamber and Model Study of SOA Formation

Optimized Hydrocarbon SOA Yield Parameters

SOA Precursor ROOH

12/10/2012

37

Summary of results

- Aromatic SOA data are simulated adequately using 4 model species representing 5 overall processes:
 - 1. Hydroperoxides from OH + alkylbenzene + O_2 + H O_2
 - 2. SOA precursors from non-phenolic, non-hydroperoxide *secondary* products (data not as well fit if primary product)
 - 3. Hydroperoxides from cresols and xylenols (not phenol)
 - 4. Model species representing 2 other processes for phenols
 - 1. NO_x-dependent SOA precursors from phenols
 - 2. NO_x -independent SOA precursors from catechols
- Reactions of phenolic products are important sources of aromatic SOA, but usually not the most important
- No clear trends in SOA yield parameters among the 14 C₆-C₉ alkylbenzenes. SOA parameters for monoalkyl benzenes are more variable than those for xylenes and trimethylbenzenes
- Most aromatic SOA relatively volatile ($K_{p, 300K} = 0.03 0.1$ W. P. L. Carter) 12/10/2012 Chamber and Model Study of SOA Formation

Discussion

- Aromatics mechanisms remain highly uncertain and gas-phase mechanisms are not fully consistent with the data.
 - SOA formation even more complex and uncertain
 - Insufficient knowledge to derive useful explicit mechanisms
- Adjusted lumped product mechanisms can simulate available SOA as well as O_3 chamber data with relatively low biases
 - Generally reasonable representation of overall processes
 - But effects of molecular structure on parameters are unclear
- Parameters from fits to yield curve using equilibrium partitioning models do not fit to the same data using kinetic mechanisms
 - May be due to using finite condensation rates in simulations
- Simulations of SOA in chamber experiments have much more scatter and higher model errors than simulations of ozone
 - Suitable adjustments can give low systematic biases, but model errors remain high. The scatter can hide biases.
 - Cause of scatter is unknown, but is probably experimental

Recommended Next Steps for SOA Mechanism Development

- SOA mechanism development is limited by data availability
 - Projects without a strong experimental component will yield little progress towards a predictive modeling capability
- Additional experiments needed to expand scope and evaluation of current SOA mechanism. Need *new*, *well characterized* data on:
 - Effects of temperature, humidity and PM from other sources
 - Evaluation data for other types of important SOA precursors
 - Improved characterization and inter-laboratory comparisons
 - Available chamber data from different laboratories should be compiled, characterized, compared, and used if adequate
- Use the data obtained to update and expand the scope of the detailed mechanism to other VOCs and conditions
- Use the evaluated detailed mechanism to develop and evaluate condensed SOA mechanisms for regulatory modeling

Acknowledgements

- **David Cocker**, UCR: Co-investigator and leader of atmospheric process research on SOA at CE-CERT.
- Chen Song, Bethany Warren, Quentin Malloy, Shunsuke Nakao, Qi Li, and other past and present members of Cocker group: Conducted the chamber experiments used in this work
- **Dennis Fitz, Kurt Bumiller, Chuck Bufalino**, other CE-CERT staff: major assistance with UCR chamber experiments
- Gookyoung Heo, UCR: Assistance in ongoing SAPRC mechanism development and evaluation
- Robert Griffin, Rice University: Assistance in reviewing modeling methods and project report
- California Air Resources Board: primary funding source for experiments for current project and mechanism development
- National Science Foundation: funding source for other UCR chamber experiments modeled for this project.

Thank you