# **Current Status of SAPRC Mechanism Development**

William P. L. Carter
College of Engineering Center for Environmental Research
and Technology (CE-CERT)
University of California, Riverside, CA
December 11, 2012

#### **Outline**

- Mechanism development objectives
- Evaluating predictive capability
- SAPRC mechanisms: description, recent updates, plans
- Recommendations

### **Mechanism Development Objectives**

#### Predictive capability

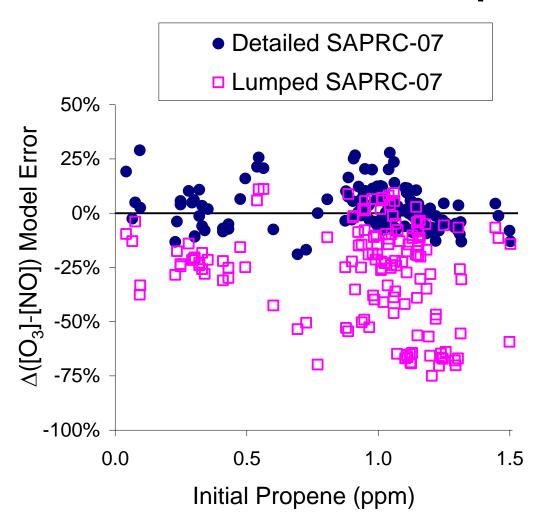
- First priority for mechanisms for regulatory models.
- Requires evaluation of predictions against measurement data representing environments to be modeled

#### Consistency with accepted laboratory data and theories

- Necessary for scientific credibility. First priority for many research mechanisms
- Reduces chance of compensating errors
- Sometimes consistency with accepted data is in conflict with predictive capability

### Appropriate condensation for the modeling application

- Too much condensation limits utility and accuracy
- Too much detail wastes resources and may not increase accuracy


### **Evaluating Predictive Capability**

- Conditions used to derive the evaluation data must be less uncertain than the mechanism being evaluated
- Environmental chamber data provide the most practical test of mechanisms without emissions and meteorological uncertainties
  - Has uncertainties and disadvantages: uncertain chamber effects, artificial conditions, etc.
  - Important uncertain parameters in many current mechanisms have to be adjusted to fit chamber data
  - SAPRC mechanism development has always been closely linked to conducting and using chamber experiments
- Ambient measurements provide an important and necessary test to predictive capability
  - But uncertainties in ambient conditions limit utility for mechanism development and adjustment

# Problems with Evaluating Condensed Mechanisms Against Experimental Data

- Lumped model species (e.g., OLE1, PAR) do not really exist, so we cannot conduct experiments with them.
- Fits to data with representative compounds do not test how well the lumped model fits data for ambient mixtures
- Experiments with mixtures can evaluate condensed mechanisms. But such evaluations have problems
  - Cause of problems unclear if the fits are poor
  - Good fits may be due to compensating errors or low sensitivity to errors for components
  - May not be relevant when ambient mixtures are different
- Evaluations against experimental data do not separately test for effects of condensation and errors in the chemistry

# Effects of VOC Lumping on Simulations of Ozone Formation Rates in Propene – NO<sub>x</sub> Chamber Experiments



Compounds used to derive OLE1 mechanism

| Mole % | Compound                                  |
|--------|-------------------------------------------|
| 29%    | Propene                                   |
| 24%    | 1-Hexene                                  |
| 12%    | 1-Butene                                  |
| 11%    | 1-Pentene                                 |
| 11%    | 1-Heptene                                 |
| 10%    | C <sub>9</sub> -C <sub>12</sub> 1-alkenes |
| 3%     | 3-Methyl-1-Butene                         |

From ambient mixture used to derive reactivity scales

### What is SAPRC?

- The SAPRC mechanisms are a series of gas-phase atmospheric chemical mechanisms developed primarily by W.P.L. Carter
- SAPRC stands for (California) <u>Statewide Air Pollution Research</u>
   <u>Center</u>, a research center at UCR where the mechanism was
   first developed in the 1980's
- Research center name changed to APRC in 1990's. Now SAPRC is just a name, and doesn't mean anything else (like "NARSTO")

### **History of the SAPRC Mechanisms**

| 1979-1980 F | First papers by Carter et al. on mechanisms                                                              |
|-------------|----------------------------------------------------------------------------------------------------------|
| 1985 F      | Paper on mechanism generation for alkanes published                                                      |
|             | Reports to EPA, USAF and CARB on multi-VOC mechanisms that served as basis for subsequent detailed SAPRC |
| 1990        | SAPRC-90 detailed mechanism developed and published                                                      |
| 1991        | Condensed SAPRC-90 for airshed models developed                                                          |
| 1994 F      | Paper on MIR and other reactivity scales using SAPRC-90                                                  |
|             | Reports on SAPRC-99 mechanisms. Current SAPRC mechanism generation system first developed                |
|             | Reports and papers on SAPRC-07 detailed and condensed mechanisms. Mechanism generation system updated    |
| 2011-2012   | SAPRC-11 for aromatics and aromatic SOA developed                                                        |
| 2013-2014   | Updates to gas-phase SAPRC planned. SOA uncertain                                                        |
| 2015        | Carter plans to be <i>really</i> retired. Future of SAPRC uncertain                                      |

# Versions of the SAPRC Mechanisms: Mechanism Generation System

- Mechanism type: semi-explicit
  - Mechanism generation software used
  - Uses measured rate constants and branching where available, estimation methods where not
  - Reaction pathways <1% for single steps are ignored</li>
  - Because of limitations, not currently used to generate complete mechanisms for models (but could in principle)
- Major limitations:
  - Not used for aromatics and cannot estimate reactions with radicals whose heats of formation cannot be estimated
  - Does not understand steric factors
  - Currently limited to generating mechanisms in presence of NO<sub>x</sub> (peroxy + peroxy mechanisms not generated)

# Versions of the SAPRC Mechanisms: Mechanism Generation System (cont'd)

- Utility
  - Full capability: alkane and alkene hydrocarbons, compounds with -O-, -OH, -CO-, -CHO, & -ONO<sub>2</sub> groups, simple amines
  - Partial capability: cyclic compounds, dialkenes, alkynes, compounds with -Cl and -F groups
  - Generates reactions with: OH, O<sub>3</sub>, NO<sub>3</sub>, hv (carbonyls), CI (limited capability for alkenes)
- Used to derive SAPRC-07 mechanisms for >600 VOCs
  - Derives overall process for reactions in presence of NO<sub>x</sub>, eliminating most intermediate organic radicals
  - "Lumping Rules" used to derive lumped model species for each predicted products
- Documentation at http://www.cert.ucr.edu/~carter/SAPRC
- Now available online at http://mechgen.cert.ucr.edu

# From Generated Mechanism to SAPRC-07: Lump Reactions, but Keep Chemical Detail

90% 
$$CH_3CH_2OH + OH \rightarrow H_2O + CH_3CH(\cdot)OH$$
5%  $CH_3CH_2OH + OH \rightarrow H_2O + CH_3CH_2O \cdot$ 
5%  $CH_3CH_2OH + OH \rightarrow H_2O + .CH_2CH_2OH$ 

90%  $CH_3CH(\cdot)OH + O_2 \rightarrow CH_3CHO + HO_2 \cdot$ 

5%  $CH_3CH_2O \cdot + O_2 \rightarrow CH_3CHO + HO_2 \cdot$ 

5%  $.CH_2CH_2OH + O_2 \rightarrow .OOCH_2CH_2OH$ 

5%  $.OOCH_2CH_2OH + NO \rightarrow NO_2 + .OCH_2CH_2OH$ 

1%  $.OCH_2CH_2OH + O_2 \rightarrow HOCH_2CHO + HO_2 \cdot$ 

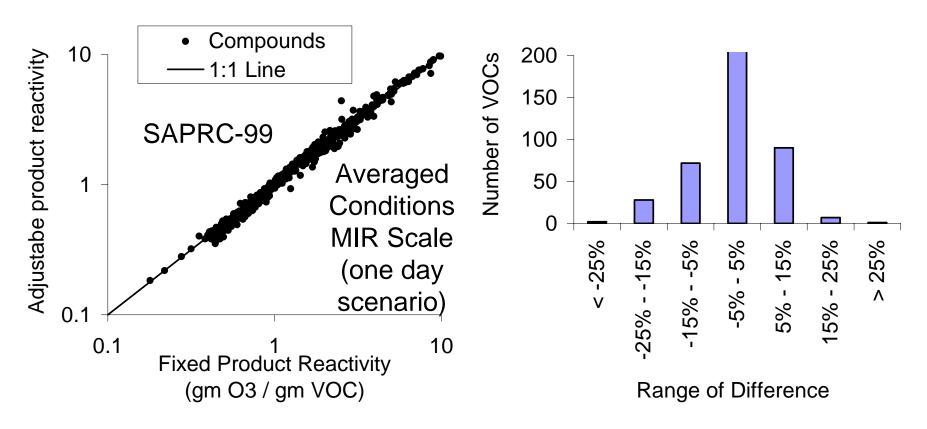
4%  $.OCH_2CH_2OH \rightarrow HCHO + .CH_2OH$ 

4%  $.CH_2OH \rightarrow CHO + CHO_2 \cdot$ 

4%  $.CH_2OH \rightarrow CHO + CHO_2 \cdot$ 

4%  $.CH_2OH \rightarrow CHO + CHO_2 \cdot$ 

 $CH_3CH_2OH + OH \rightarrow 0.95 \{HO_2 + CH_3CHO\} + 0.08 xHCHO + 0.01 xHOCH_2CHO + 0.05 \{xHO_2 + RO2C + yROOH\}$ 


# Versions of the SAPRC Mechanisms: Adjusted Product "Detailed" Mechanisms

- Mechanism type: detailed VOC, semi-explicit + lumped products
  - Mechanisms for reactive product lumped model species derived based on mechanisms for products they represent
  - Used for VOCs whose primary and reactive product mechanisms could be derived by mechanism generation
  - Lower reactivity or lower yield (<5%) products represented using lumped product model species
- Used for reactivity scale calculations if this method changed the SAPRC-99 "averaged conditions" MIR by >8% (134 VOCs)
- Not currently used for other purposes, but could potentially be the basis for deriving an explicit product version of SAPRC (comparable in size or larger than MCM)

### Versions of the SAPRC Mechanisms: Lumped Product "Detailed" Mechanism

- Mechanism type: explicit VOC, lumped products
  - Used in reactivity calculations (in conjunction with a lumped VOC version that represents the base ROG mixture)
  - Mechanisms for >600 VOCs from mechanism generation
  - Mechanisms for ~130 others estimated using other means
  - 31 model species used to represent organic products
- Ozone predictions extensively evaluated against chamber data
  - >2500 experiments, 11 chambers, 4 laboratories
  - $\Delta([O_3]-[NO])$  generally simulated within  $\pm 30\%$
- Used to calculate MIR and other VOC reactivity scales
  - 774 calculated explicitly, 407 others based on explicit VOCs
  - "Adjusted product" version used for 134 VOCs (next slide)
- Used to derive the lumped VOC versions of SAPRC-07

# Differences Between Adjusted Product and Lumped Product Ozone Reactivity Values

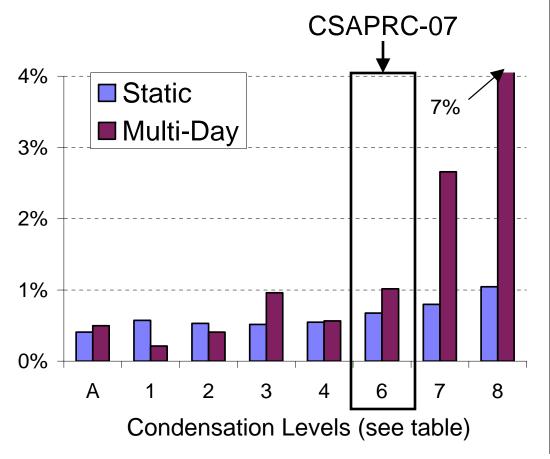


SAPRC-07 Results should be similar

12/18/2012

Differences may be greater for multi-day scenarios

# Versions of the SAPRC Mechanisms: SAPRC-07 Lumped VOC Mechanisms


- Mechanism type: lumped VOC
  - Developed for use in airshed models.
  - Same inorganic and lumped product mechanisms as detailed
  - 10 Lumped VOC species: ALK1-5, OLE1-2, ARO1-2, TERP
  - Currently two versions:
    - Standard version: methane, ethene, benzene, isoprene, acetylene explicit (total of 15 VOC species)
    - "Toxics" version: these + 11 other selected VOCs explicit
- Derived from explicit VOC, lumped product mechanisms, with lumped VOC reactions based on the compounds they represent
  - Weighting factors from base ROG mixture used in reactivity scales. (But ambient mixture needs updating)
- Used to represent base case when calculating reactivity scales

### Versions of the SAPRC Mechanisms: CSAPRC-07 Condensed Mechanisms

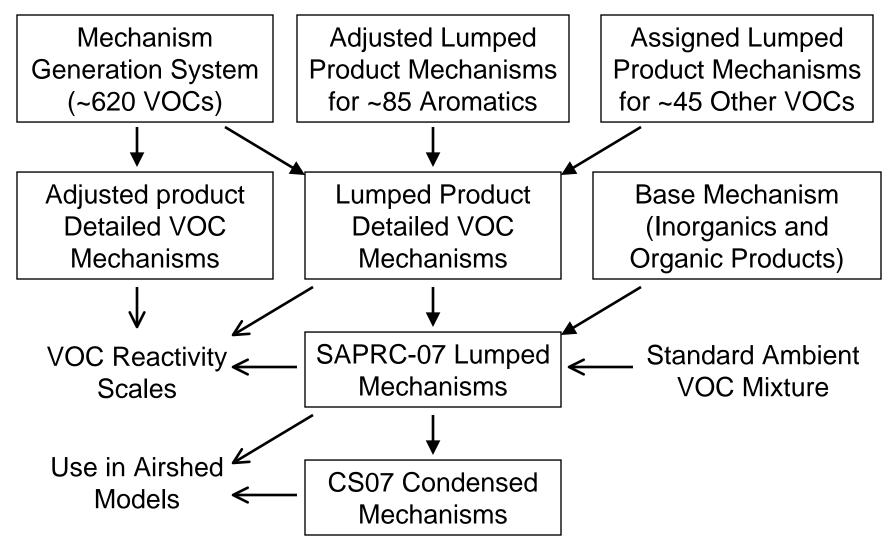
- Mechanism type: lumped VOC
  - Developed for give almost same O<sub>3</sub> in airshed calculations as standard lumped SAPRC-07 with fewer model species.
  - Number of organic product model species reduced from 30 to 13, VOCs species reduced from 15 to 10.
- Derived from standard lumped SAPRC-07
  - Test calculations used to examine incrementally increasing lumping effects on O<sub>3</sub>, NO<sub>x</sub>, H<sub>2</sub>O<sub>2</sub>, OH and total PANs.
    - Static, dynamic, multi-day ambient simulations
    - Static simulations with individual types of VOCs
  - Most extensive condensations that did not significantly affect
     O<sub>3</sub> results were adopted for CSAPRC07

### **Ozone Changes Caused by Condensations**

Average of absolute change in O<sub>3</sub> for scenarios at various ROG and NO<sub>x</sub> levels, relative to uncondensed SAPRC-07



#### **Condensation Levels**


| Α | SAPRC-99 Peroxy lumping                               |
|---|-------------------------------------------------------|
| 1 | (A) + Low reactivity product compounds lumped         |
| 2 | (1) + Higher PANs lumped with PAN2                    |
| 3 | (2) + 1-Product isoprene mechanism                    |
| 4 | (3) + Aromatics mechanism simplified                  |
| 6 | (4) + Fewer lumped species for alkanes (CSAPRC-07)    |
| 7 | (6) PAN lumped with PAN2 (Change too great, not used) |
| 8 | (7) + Acetaldehyde lumped with RCHO (Not used)        |

# Effects of Lumping on SAPRC-07 Ozone Predictions for a Multi-Day Scenario



- 5-Day simulations with Continuous emissions
- Same ambient mixture as used to derive the lumped mechanism

### Relationships Between Current Versions of the SAPRC-07 Mechanisms

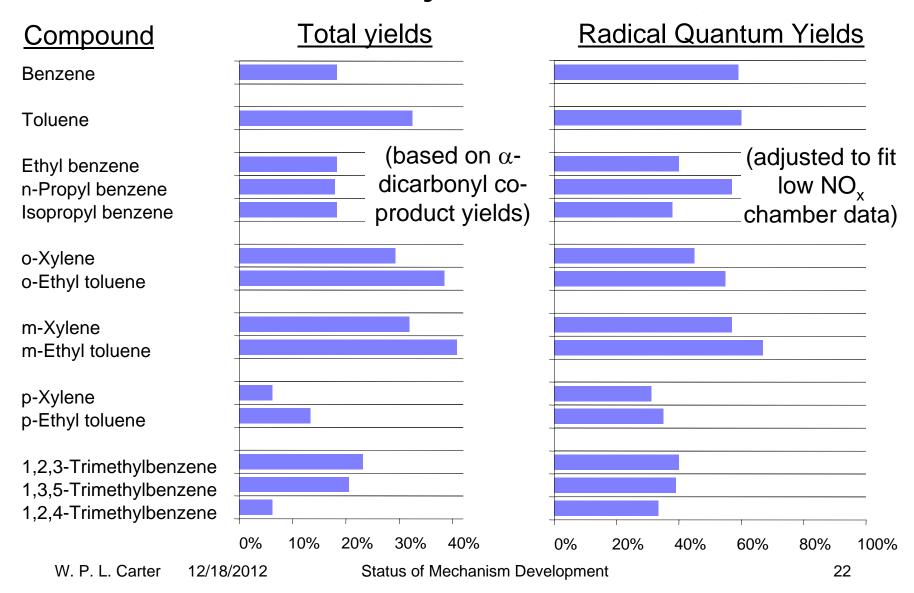


### Updates to SAPRC-07: SAPRC-11 Gas-Phase Aromatics Mechanism

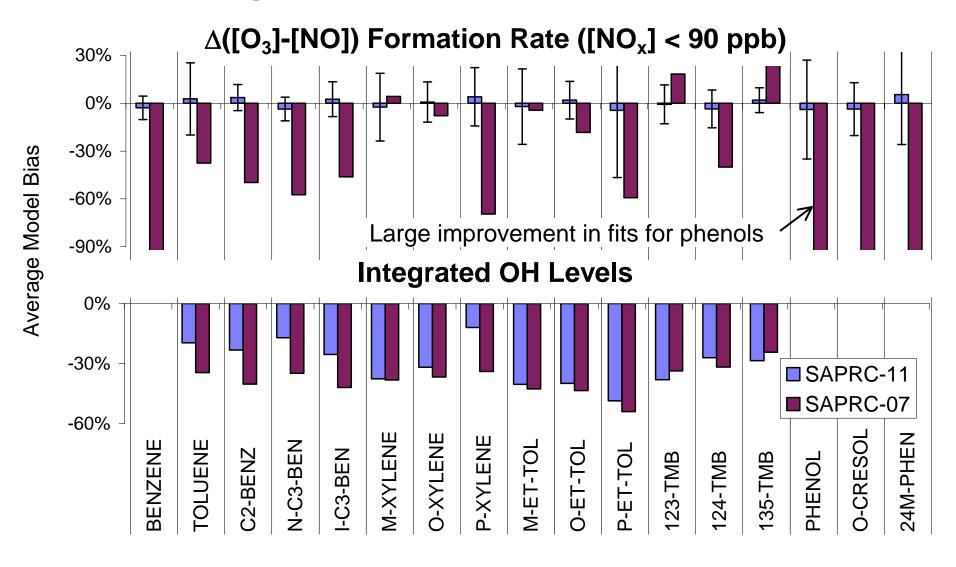
- Mechanism type: Explicit VOC, lumped products
- Same base mechanism as SAPRC-07, with minor corrections
- Aromatic mechanisms revised, but same general approach
  - Much better fits to results of many new aromatic NOx experiments, especially at lower concentrations
  - Rate constants, known product yields updated
  - Data and mechanisms for additional compounds
  - Much more reactive mechanisms for phenols
- Most inconsistencies and problems with SAPRC-07 remain
  - Chamber data for benzene and toluene have greater dependence on NO<sub>x</sub> than indicated by product studies
  - OH radical levels are still significantly underpredicted
- Lumped versions for airshed models not yet developed

### **Features of SAPRC-11 Aromatic Reactions**

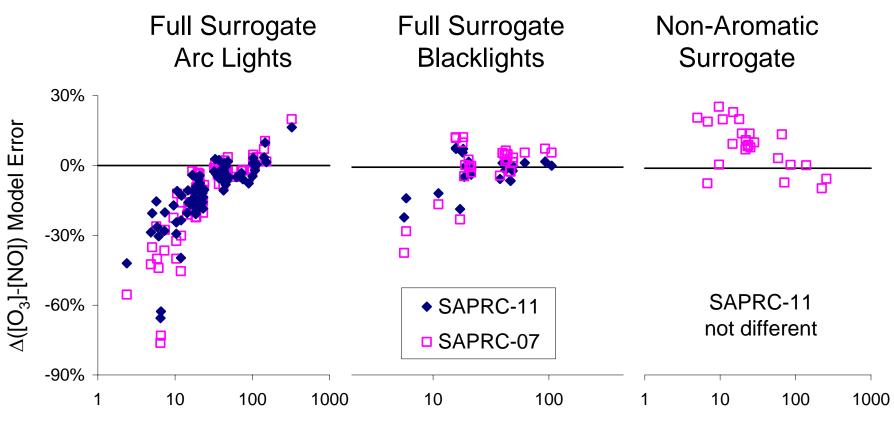



### Problem with NO<sub>x</sub> Dependences on Benzene and Toluene Model Fits

- Benzene and toluene models adjusted for runs with NO<sub>x</sub><100 ppb overpredict O<sub>3</sub> formation rates at higher NO<sub>x</sub>
- Data can be fit if a reaction of the OH-aromatic adduct with NO<sub>2</sub>, forming lower reactivity products, is added, and k(O<sub>2</sub>) / k(NO<sub>2</sub>) is adjusted to fit the chamber data
- The NO<sub>2</sub> levels where the rates of the NO<sub>2</sub> and O<sub>2</sub> reactions are equal are not consistent with laboratory product yield data.


| Compound(s) | Fits Chamber Data         | Derived from Lab Studies |
|-------------|---------------------------|--------------------------|
| Benzene     | ~ 10 ppb NO <sub>2</sub>  | ~ 1 ppm NO <sub>2</sub>  |
| Toluene     | ~ 200 ppb NO <sub>2</sub> | ~ 3 ppm NO <sub>2</sub>  |
| Most others | (Reaction not needed)     | Higher NO <sub>2</sub>   |

 This is a case where apparent predictive capability and accepted laboratory data disagree

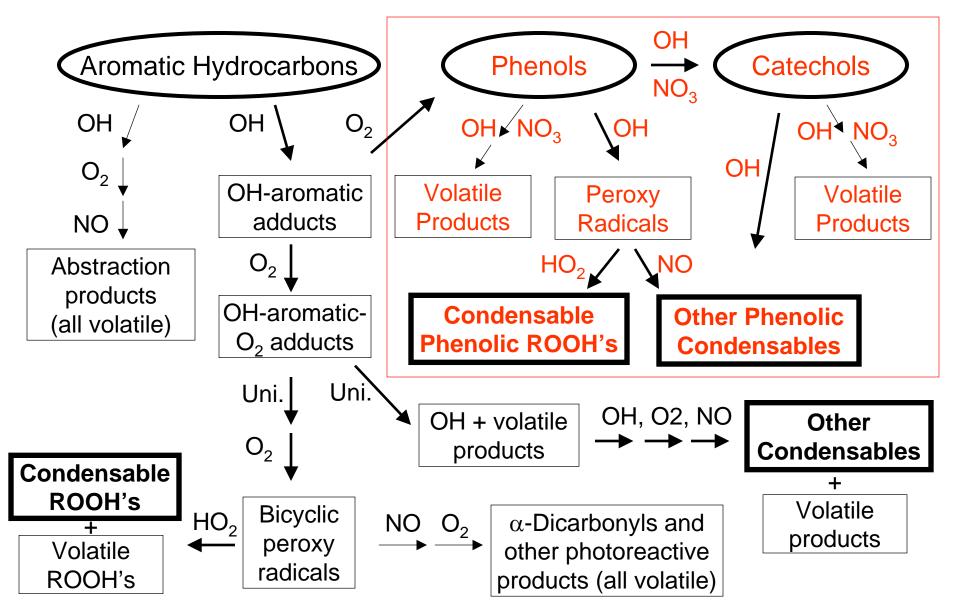

### Photoreactive Dicarbonyls: Total Yields and Adjusted Quantum Yields



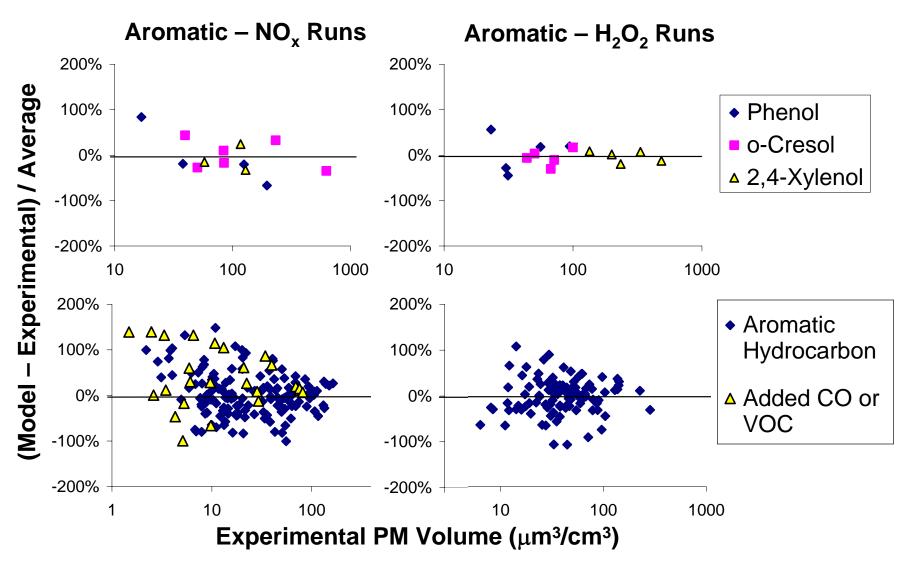
### **Average Model Biases for Compounds**



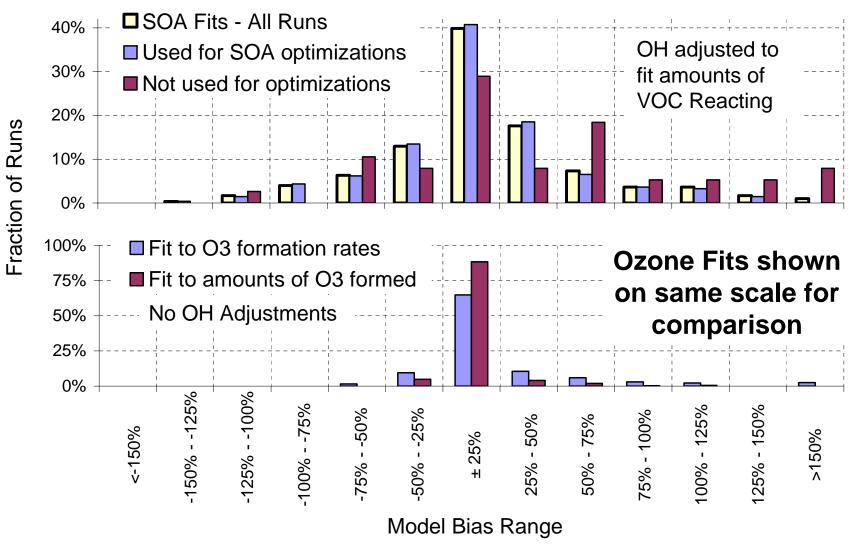
# Plots of $\Delta([O_3]-[NO])$ Model Errors against VOC / NO<sub>x</sub> for the Surrogate – NO<sub>x</sub> Experiments



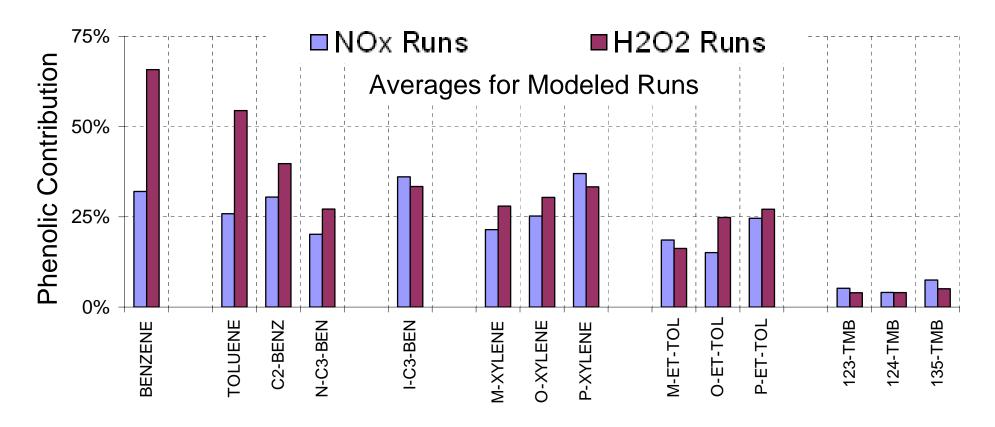

Initial Surrogate / NO<sub>x</sub> Ratio (ppmC / ppm)


### **SAPRC-11 Aromatic SOA Mechanism**

- Results of 164 aromatic NO<sub>x</sub> and 126 aromatic H<sub>2</sub>O<sub>2</sub> experiments in UCR-EPA chamber used to develop predictive SOA model for 14 aromatic hydrocarbons and 3 phenols
  - Experiments described in presentation by David Cocker
  - Characterized for both gas-phase and PM evaluations
- SAPRC-11 gas-phase mechanism used as the starting point. No changes made that affect gas-phase predictions
- Lumped SOA precursor model species added to mechanism as needed to predict how SOA affected by reaction conditions
  - No more species added than needed. No attempt to identify specific SOA species. Insufficient information for more detail.
  - Yields and partitioning coefficients adjusted to fit data
- Results documented in report to CARB and will be described in a presentation at the CARB on Friday, December 14.

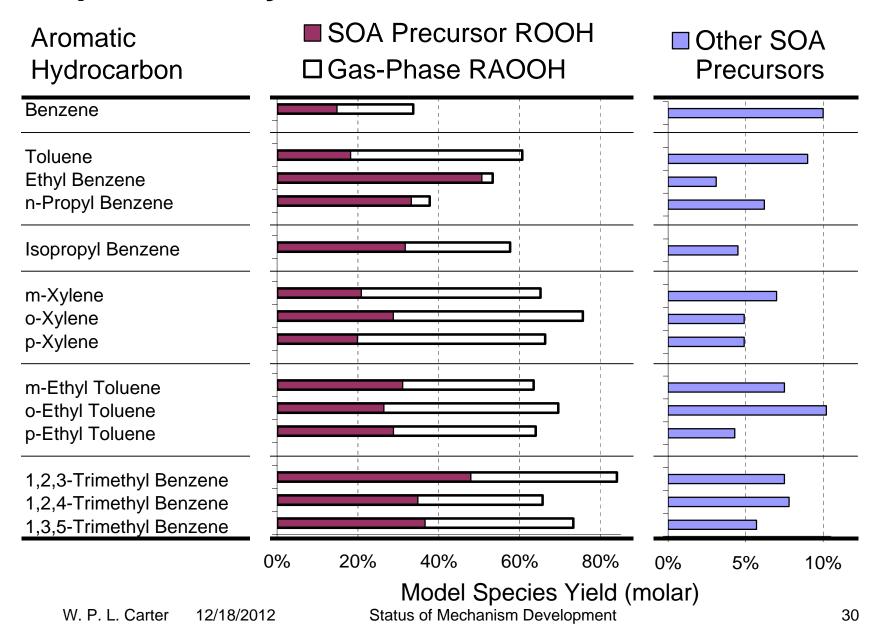

### **Aromatic SOA Processes Used**




### Model Fits for All Experiments used to Derive Aromatic SOA Parameters



# Distribution of Error Ranges in PM Volume Predictions for all Experiments Modeled




# Relative Contributions of Phenolic Products to SOA from Aromatic Hydrocarbons



Averages calculated for aromatic -  $NO_x$  and Aromatic -  $H_2O_2$  runs Predicted using parameters adjusted to fit SOA chamber data

### **Optimized Hydrocarbon SOA Yield Parameters**



### **Discussion of Aromatic SOA Mechanism**

- Aromatics mechanisms remain highly uncertain and SOA formation even more complex and uncertain
  - Insufficient knowledge to derive useful explicit mechanisms
- Adjusted lumped product mechanisms can simulate available SOA as well as O<sub>3</sub> chamber data with relatively low biases
  - Generally reasonable representation of overall processes, but effects of molecular structure on parameters are unclear
- Parameters from fits to yield curve using equilibrium partitioning models do not fit to the same data using kinetic mechanisms
  - May be due to using finite condensation rates in simulations
- Simulations of SOA in chamber experiments have much more scatter and higher model errors than simulations of ozone
  - Suitable adjustments can give low systematic biases, but model errors remain high. The scatter can hide biases.
  - Cause of scatter is unknown, but is probably experimental

# Recommended Next Steps for SOA Mechanism Development

- SOA mechanism development is limited by data availability
  - Projects without a strong experimental component will yield little progress towards a predictive modeling capability
- Additional experiments needed to expand scope and evaluation of current SOA mechanism. Need new, well characterized data on:
  - Effects of temperature, humidity and PM from other sources
  - Evaluation data for other types of important SOA precursors
  - Improved characterization and inter-laboratory comparisons
  - Available chamber data from different laboratories should be compiled, characterized, compared, and used if adequate
- Use the data obtained to update and expand the scope of the detailed mechanism to other VOCs and conditions
- Use the evaluated detailed mechanism to develop and evaluate condensed SOA mechanisms for regulatory modeling

### **SAPRC Update Projects Currently Underway**

- Documentation of SAPRC modeling software and data files
  - Software used for SAPRC mechanism development, evaluation, and use is finally being documented
  - Data files and spreadsheets implementing SAPRC will also be documented and made available for future developers
- Mechanism generation system updates and documentation
  - Estimation methods and assignment database to be updated
  - Publication documenting updated system being prepared
  - Web access being improved (see mechgen.cert.ucr.edu)
- General mechanism updates (detailed and lumped VOC)
  - Complete update of base mechanism
  - Incorporate aromatic and mechanism generation updates
  - Evaluate changes in peroxy and VOC product lumping approaches (implementation mostly for the follow-on project)

### **SAPRC Update Project Currently Planned**

- Develop improved VOC product lumping approach
  - Separate representation of unsaturated PANs and nitrates needed to improve predictions of NO<sub>x</sub> recycling
  - Separate representation of higher molecular weight products needed to support process-based SOA modeling
  - Objective is to improve detail for predictive capability, but not more than needed or can be supported by theories and data
- Continue attempting to improve aromatic mechanisms
  - Improve mechanism generation support for aromatics
  - Objectives are to improve
    - Level of detail that is supported by data and theories
    - Consistency with both laboratory and chamber data
- Work on on gas-phase improvements to eventually aid future SOA models being developed by other groups

# Proposed SAPRC Updates Not Currently Funded

- Continue steps needed to develop SAPRC SOA mechanism
  - Requires new well-characterized chamber experiments
  - Use results to develop explicit VOC, lumped product mechanisms with enough detail to represent major processes
  - Use the detailed and experimentally evaluated mechanism to develop condensed mechanisms for regulatory models
- Develop near-explicit SAPRC mechanisms that are chemically consistent with existing condensed SAPRC mechanisms
  - Mechanism generation system can be adapted to produce models with any level of detail based on current estimates
  - Allows comprehensive studies of condensation effects
  - Update or alternative to MCM for similar research needs
  - Potential framework for detailed SOA modeling when basic understanding improves

### General Recommendations for Mechanism Development

- Investment in chamber experiments with high characterization standards is critical to developing predictive mechanisms
  - We would not have reliable models for ozone without the well characterized chamber database developed since the 1970's
  - SOA is more complicated, requires more data, and the availability of suitable data is limited. This is the main factor limiting predictive SOA model development
- Start by developing and evaluating the most chemically detailed mechanism possible given the available state of knowledge
  - Developing more scientifically valid condensed mechanisms, based on a more detailed understanding, can follow
- Mechanism generation is the "wave of the future"
  - Provides a framework to organize theory and data
  - Research in improving estimation methods (including thermochemical) needs to be given higher priority

### **Acknowledgements**

- Roger Atkinson, Helpful discussions on atmospheric chemistry over many years
- Gookyoung Heo: Assistance in ongoing SAPRC mechanism development and evaluation
- <u>David Cocker</u>, UCR: Collaborating on UCR chamber experiments on SOA formation
- Chen Song, Bethany Warren, Quentin Malloy, Shunsuke Nakao, Qi Li, and other past and present members of Cocker group: Conducting aromatic SOA and other UCR chamber experiments
- <u>Dennis Fitz, Kurt Bumiller, Chuck Bufalino</u>, other CE-CERT staff: assistance with UCR chamber experiments
- <u>California Air Resources Board</u>: Major funding source for current SAPRC mechanism development